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Scheduling for planning applications
The motivating problem
Planning subject to temporal constraints
We may or may not (more realistically) assume that the executor can
always control action duration.
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Temporal Problems

We need formalisms to describe temporal knowledge possibly in presence
of uncertainty.

Temporal Problems
A set of time-valued variables called time points constrained by difference
constraints.

Temporal Problems with Uncertainty
A Temporal Problem that distinguishes controllable and uncontrollable
time points and divides constraints in contingent (assumptions) and free
constraints (requirements) to model the temporal uncertainty.
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Temporal Problems Formalization

Definition
A Temporal Problem is a tuple (Xc ,Cf ).

Xc=̇{b1, ..., bn} is the set of time points
Cf =̇{cf1, ..., cfh} is the set of free constraints

cfi =̇
Di∨

j=1
(xi ,j − yi ,j) ∈ [l f

i ,j , uf
i ,j ]

l f
i ,j , uf

i ,j ∈ R ∪ {+∞,−∞}
l f
i ,j ≤ uf

i ,j
Di is the number of disjuncts
for the i-th free constraint

xi ,j , yi ,j ∈ Xc

xi ,j 6= yi ,j .
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Temporal Problem Example

Example
As Ae

[7, 11]

Bs

[0,∞)

Be
[8, 11]

[0, 20]

As , Ae , Bs , Be are Time Points (Xc)
represents Free Constraints (Cf )

Taxonomy
Let Xc =̇ {x1, ..., xk}.

STP TCSP DTP
No disjunctions Interval disjunctions Arbitrary disjunctions
(xi − xj) ∈ [l , u] (xi − xj) ∈

⋃
w [lw , uw ]

∨
w ((xiw − xjw ) ∈ [lw , uw ])
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Temporal Problem Solution

Consistency
Given a temporal problem, we can check if there exists an assignment to
time points that fulfills all the constraints.
This can be done by a single call to an SMT(DL) solver!

Minimal Network
Sometimes we want to retain flexibility, hence we do not decide all the
time points upfront but we propagate the constraints to be as strict as
possible without loosing solutions.
Requires runtime propagation!
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Consistency of STP
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Consistency of TCSP
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Temporal Problems with Uncertainty Formalization
Definition
A Temporal Problem with Uncertainty is a tuple (Xc ,Xu,Cc ,Cf ).

Xc=̇{b1, ..., bn} is the set of controllable time points
Xu=̇{e1, ..., em} is the set of uncontrollable time points
Cc=̇{cc1, ..., ccm} is the set of contingent constraints
Cf =̇{cf1, ..., cfh} is the set of free constraints

cci =̇
∨Ei

j=1(ei − bi ) ∈ [lc
i ,j , uc

i ,j ] cfi =̇
∨Di

j=1(xi ,j − yi ,j) ∈ [l f
i ,j , uf

i ,j ]

lc/f
i ,j , u

c/f
i ,j ∈ R ∪ {+∞,−∞}

lc/f
i ,j ≤ uc/f

i ,j
Di is the number of disjuncts
for the i-th free constraint

Ei is the number of disjuncts for the
i-th contingent constraint
xi ,j , yi ,j ∈ Xc ∪ Xu

xi ,j 6= yi ,j .
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Temporal Uncertainty Characterization

Uncertainty can be seen as a game between an Executor and the
adversarial Nature.

Rules
The Executor schedules a set of Controllable Time Points (Xc)

The Executor must fulfill a set of temporal constraints called Free
Constraints (Cf )

The Nature tries to prevent the success of the executor scheduling a
set of Uncontrollable Time Points (Xu)
The Nature must fulfill a set of temporal constraints called
Contingent Constraints (Cc)
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Temporal Problem with Uncertainty Solution
Three possible degrees of Controllability

Strong Controllability (No observation)
Find a fixed schedule for controllable time points that fulfills all the free
constraints for every possible assignment to uncontrollable time points
fulfilling contingent constraints.

Dynamic Controllability (Past observation)
Find a strategy, that depends on past observations only, for scheduling
controllable time points that fulfills all the free constraints for every
possible assignment to uncontrollable time points fulfilling contingent
constraints.

Weak Controllability (Full observation)
Find a strategy for scheduling controllable time points that fulfills all the
free constraints for every possible assignment to uncontrollable time points
fulfilling contingent constraints.
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Schedules and Strategies Examples
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Schedules and Strategies Examples
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Temporal Problem Taxonomy Recap

Let {x1, ..., xk} be the set of all time points of the temporal problem (with
uncertainty).

Uncertainty Type
No Uncertainty Uncertainty

Co
ns

tr
ai

nt
Ty

pe No disjunctions STP STPU
(xi − xj) ∈ [l , u]

Interval disjunctions TCSP TCSPU
(xi − xj) ∈

⋃
w [lw , uw ]

Arbitrary disjunctions DTP DTPU∨
w ((xiw − xjw ) ∈ [lw , uw ])
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Satisfiability Modulo Theory (SMT)

SMT is the problem of deciding satisfiability of a first-order Boolean
combination of theory atoms in a given theory T .

Given a formula φ, φ is satisfiable if there exists a model µ such that
µ |= φ.

Example
φ=̇(∀x .(x > 0)∨(y ≥ x))∧(z ≥ y)
is satisfiable in the theory of real
arithmetic because

µ = {(y , 6), (z , 8)}

is a model that satisfies φ.

Theories
Various theories can be used.

In this work:

LRA (Linear Real Arithmetic)

QF LRA (Quantifier-Free
Linear Real Arithmetic)

15/49



Satisfiability Modulo Theory (SMT)

SMT is the problem of deciding satisfiability of a first-order Boolean
combination of theory atoms in a given theory T .

Given a formula φ, φ is satisfiable if there exists a model µ such that
µ |= φ.

Example
φ=̇(∀x .(x > 0)∨(y ≥ x))∧(z ≥ y)
is satisfiable in the theory of real
arithmetic because

µ = {(y , 6), (z , 8)}

is a model that satisfies φ.

Theories
Various theories can be used.

In this work:

LRA (Linear Real Arithmetic)

QF LRA (Quantifier-Free
Linear Real Arithmetic)

15/49



Satisfiability Modulo Theory (SMT)

SMT is the problem of deciding satisfiability of a first-order Boolean
combination of theory atoms in a given theory T .

Given a formula φ, φ is satisfiable if there exists a model µ such that
µ |= φ.

Example
φ=̇(∀x .(x > 0)∨(y ≥ x))∧(z ≥ y)
is satisfiable in the theory of real
arithmetic because

µ = {(y , 6), (z , 8)}

is a model that satisfies φ.

Theories
Various theories can be used.

In this work:

LRA (Linear Real Arithmetic)

QF LRA (Quantifier-Free
Linear Real Arithmetic)

15/49



AllSMT
The AllSMT problem

~b is a vector of Boolean variables
φ(~x , ~b) is a quantifier-free SMT formula in some theory T

We want a quantifier-free formula ψ(~b) such that ψ(~b)⇔ ∃~x .φ(~x , ~b)

1: procedure AllSMT(φ(~x , ~b))
2: res(~b)← ⊥
3: while SMT(φ(~x , ~b)) do
4: model ← GetModel()
5: cube(~b)← >
6: for all bi ∈ ~b do
7: if bi ∈ model then cube(~b)← cube(~b) ∧ bi
8: else if ¬bi ∈ model then cube(~b)← cube(~b) ∧ ¬bi

9: res(~b)← res(~b) ∨ cube(~b)

10: φ(~x , ~b)← φ(~x , ~b) ∧ ¬cube(~b)

11: return res(~b)
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Quantifier Elimination

Quantifier Elimination Definition
A theory T has quantifier elimination if for every formula Φ, there exists
another formula ΦQF without quantifiers which is equivalent to it (modulo
the theory T )

Example
LRA theory admits quantifier elimination, but elimination algorithms are
very costly (doubly exponential in the size of the original formula).
(∃x .(x ≥ 2y + z) ∧ (x ≤ 3z + 5))↔ (2y − 2z − 5 ≤ 0)

Note: Quantifier Elimination more general than AllSMT! Here we can
leave (some/all) theory variables unquantified!

17/49
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Quantifier Elimination for LRA

Various techniques
Fourier-Motzkin
Loos-Weisspfenning
...

Fourier-Motzkin Elimination
Procedure that eliminates a variable from a conjunction of linear
inequalities.
It can be applied to a general LRA formula by computing the DNF
and applying the technique to each disjunct.
The complexity is doubly exponential: in the number of variable to
quantify and in the size of the DNF formula.
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Fourier-Motzkin Elimination
Let ψ=̇∃xr .

∧N
i=0

∑M
k=1 aikxk ≤ bi be the problem we want to solve, where

xr is the variable to eliminate.
We have three kinds of inequalities in a system of linear inequalities:

xr ≥ Ah, where Ah=̇bi −
∑ri−1

k=1 aikxk , for h ∈ [1,HA]

xr ≤ Bh, where Bh=̇bi −
∑ri−1

k=1 aikxk , for h ∈ [1,HB]

Inequalities in which xr has no role. Let φ be the conjunction of those
inequalities.

The system is equivalent to (maxHA
h=1(Ah) ≤ xr ≤ minHb

h=1(Bh)) ∧ φ and to
(maxHA

h=1(Ah) ≤ minHb
h=1(Bh)) ∧ φ

max and min are not linear functions, but we can mimic the formula by
using a quadratic number of linear inequalities:

ψ ⇔ (
HA∧
i=0

HB∧
j=0

Ai ≤ Bj) ∧ φ
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Fourier-Motzkin Example
Fourier Motzkin Example: Step 1
Let ψ=̇∀z .((z ≥ 4)→ ((x < z) ∧ (y < z))).
We convert all the quantifiers in existentials and we compute the DNF of
the quantified part of the formula.
ψ ⇔ ¬∃z .((z ≥ 4) ∧ ¬((x < z) ∧ (y < z)))
ψ ⇔ ¬∃z .((z ≥ 4) ∧ (¬(x < z) ∨ ¬(y < z)))
ψ ⇔ ¬∃z .(((z ≥ 4) ∧ ¬(x < z)) ∨ ((z ≥ 4) ∧ ¬(y < z)))

Fourier Motzkin Example: Step 2
For every disjunct, we apply the Fourier-Motzkin Elimination:
((z ≥ 4) ∧ (z ≤ x))⇔ (4 ≤ x)
((z ≥ 4) ∧ (z ≤ y))⇔ (4 ≤ y)

Then, we rebuild the formula:
ψ ⇔ ¬((4 ≤ x) ∨ (4 ≤ y))
ψ ⇔ ((x < 4) ∧ (y < 4))
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Strong Controllability

Intuition
Search for a Fixed Schedule
that fulfills all free the
constraints in every situation.

Example

As Ae
[7, 11]

Bs

[0,∞)

Be
[8, 11]

[0, 20]

Schedule:
Var Time
As 0
Ae 8
Bs 9

Definition
A temporal problem with uncertainty is Strongly Controllable if

∃~Xc .∀~Xu.(Cc(~Xc , ~Xu)→ Cf (~Xc , ~Xu))

where ~Xc and ~Xu are the vectors of controllable and uncontrollable time
points respectively, Cc(~Xc , ~Xu) are the contingent constraints and
Cf (~Xc , ~Xu) are the free constraints.
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First step: Uncontrollability Isolation
Let e ∈ Xu and b ∈ Xc .
For every contingent constraint (e − b) ∈ [l , u], we introduce an offset
y =̇ b + u − e.

Timeb b + l b + ue

y

Definition
Let ~Yu be the offsets for a given Temporal Problem with Uncertainty

Let Γ(~Yu) be the rewritten Contingent Constraints

Let Ψ(~Xc , ~Yu) the rewritten Free Constraints.
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Uncontrollability Isolation: example

As Ae
[7, 11]

Bs

[0,∞)

Be
[8, 11]

[0, 20]

Original formulation
∃As , Ae , Bs . ∀Be .

((Be − Bs ) ∈ [8, 11])→ (((Ae − As ) ∈ [7, 11])

∧ ((Be − As ) ∈ [0, 20])

∧ ((Bs − Ae) ∈ [0,∞)))

Rewritten formulation with YBe offset
∃As , Ae , Bs . ∀YBe .

(YBe ∈ [0, 3])→(((Ae − As ) ∈ [7, 11])

∧ (((Bs + 11− YBe )− As ) ∈ [0, 20])

∧ ((Bs − Ae) ∈ [0,∞)))

~Yu = [YBe ]

Γ(~Yu) = (YBe ∈ [0, 3])

Ψ(~Xc , ~Yu) = (((Ae − As ) ∈ [7, 11]) ∧ ... ∈ [0,∞)))
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Direct and Näıve encodings

Direct Encoding
Strong Controllability definition is by itself an encoding in SMT(LRA)

∃~Xc .∀~Xu.(Cc(~Xc , ~Xu)→ Cf (~Xc , ~Xu))

Näıve Encoding
Thanks to uncontrollability isolation, Strong Controllability can be
rewritten as follows.

∃~Xc .∀~Yu.(Γ(~Yu)→ Ψ(~Xc , ~Yu))

24/49



Direct and Näıve encodings
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Distributed Encoding
Idea: because of the cost of quantifier elimination, many small
quantifications can be solved more efficiently than a big single one.

Starting Point
We assume Ψ(~Xc , ~Yu)

Ψ(~Xc , ~Yu) =̇
∧
h
ψh(~Xch ,

~Yuh )

Distributed Encoding
From the Näıve Encoding we can derive a Distributed Encoding, by
pushing the quantifications:

∃~Xc .
∧
h
∀~Yuh .(¬Γ(~Yu)|Yuh

∨ ψh(~Xch ,
~Yuh ))
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Eager ∀ Elimination Encoding

Idea: Starting from Distributed Encoding, we can eliminate quantifiers
during the encoding, producing a QF LRA formula.

Encoding
Let

ψΓ
h(~Xch ) =̇ ¬∃~Yuh .(Γ(~Yuh )|Yuh

∧ ¬ψh(~Xch ,
~Yuh ))

1 Resolve ψΓ
h(~Xch ) for every clause independently using a quantifier

elimination procedure
2 Solve the QF LRA encoding:

∃~Xc .
∧
h
ψΓ

h(~Xch )
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Exploit TCSPU structure

Consider a single TCSPU constraint:

B − A ∈ [0, 20] [25, 50] [60, 75]

time0

Encoding TCSPU constraints in 2-CNF (Hole Encoding)

((B − A) > 0)

∧ ((B − A) < 20) ∨ ((B − A) > 25)

∧ ((B − A) < 50) ∨ ((B − A) > 60)

∧ ((B − A) < 75)
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Static quantification TCSPU
Idea: Exploit Hole Encoding for TCSPU to statically resolve quantifiers in
the Eager ∀ elimination encoding.

Approach
Hole Encoding gives us a 2-CNF formula. We can enumerate all the
possible (8) cases and statically resolve the quantification.

Cases
Let bi , bj ∈ Xc , ei , ej ∈ Xu.
The only possible clauses in the Hole Encoding are in the form:

(bi − bj) ≤ k
(ei − bj) ≤ k
(bi − ej) ≤ k
(ei − ej) ≤ k

(bi − bj) ≤ k1 ∨ (bi − bj) ≥ k2

(ei − bj) ≤ k1 ∨ (ei − bj) ≥ k2

(bi − ej) ≤ k1 ∨ (bi − ej) ≥ k2

(ei − ej) ≤ k1 ∨ (ei − ej) ≥ k2
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Static quantification TCSPU (Example)
Let b ∈ Xc , e ∈ Xu and let ye be the offset for e.
Let C be a hole-encoded clause of the TCSPU problem.

C =̇ (b − e) ≤ u ∨ (b − e) ≥ l

In the eager ∀ elimination encoding we have

¬∃ye .((y ≥ 0) ∧ (y ≤ ue − le)∧
¬(((b − (be + u − ye)) ≤ u) ∨ ((b − (be + u − ye)) ≥ l)).

The formula can be statically simplified

R =̇ ((l − b + be + ue ≤ 0) ∨ (l − b + be + le > 0))∧
((l − b + be + le < 0) ∨ (b − be − u − le ≤ 0))

Whenever a clause matches the structure of C we can derive ψΓ
h(~Xch ) by

substituting appropriate values for l , u, be , le and ue in R.
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Strong Controllability Results

STPU Results
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Näıve Encoding of the Decision Problem

Intuition
The definition of Weak Controllability, can be seen as a SMT (LRA)
formula by interpreting time points as real variables.

Näıve Encoding
A temporal problem is weakly controllable if and only if

∀~Xu.∃~Xc .(Cc(~Xc , ~Xu)→ Cf (~Xc , ~Xu))

is valid.
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Decision Encodings
Näıve Rewritten Encoding: ∀~Yu.∃~Xc .(Γ(~Yu)→ Ψ(~Xc , ~Yu))

Inverted Encoding
The problem is Weakly Controllable if and only if the formula

¬∃~Xc .(Γ(~Yu)→ Ψ(~Xc , ~Yu))

is unsatisfiable.

Gamma Extraction Encoding
The problem is Weakly Controllable if and only if the formula

Γ(~Yu) ∧ ¬(∃~Xc .Ψ(~Xc , ~Yu)).

is unsatisfiable.

The Inverted Encodings can be solved by any SMT(LRA) solver.
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Strategies: Intuition
Given the solution space P, in the space of ~Xc and ~Yu, a strategy is a
(possibly non-continuous) surface S, such that P ∩ S projected in the
space of ~Yu only, contains the polyhedron Γ(~Yu).

Example

y1
y2

x1

If S is a (hyper-)plane, the
strategy is linear, i.e.

f (~Yu)=̇A · ~Yu + ~b
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Linearity is not enough

Theorem
Not every weakly controllable STPU admits a linear strategy.

Example

y1

y2

X2

1
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X2
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Linear Strategy Encoding in SMT (QF LRA) for STPU
Idea: exploit the convexity of the STPU

Example

y1

x1

3

Γ(y1, y2) =̇ y1 ≥ 0 ∧ y1 ≥ 0∧
y1 ≤ 3 ∧ y2 ≤ 1

f (~Yu) =̇ (a1 a2) ·
(

y1
y2

)
+ b

∃a1, a2, b. ∀y1, y2.

Γ(y1, y2)→ Ψ(f (a1, a2, b), y1, y2)

Enc(a1, a2, c) =̇

Ψ(0a1 + 0a2 + b, 0, 0) ∧
Ψ(0a1 + 1a2 + b, 0, 1) ∧
Ψ(3a1 + 0a2 + b, 3, 0) ∧
Ψ(3a1 + 1a2 + b, 3, 1)
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Encoding in SMT (QF LRA)

Idea
Search for the coefficients fulfilling a linear strategy in all the extreme
assignments (bounds) of Γ(~Yu).

1: procedure LinearStrategy(Γ(~Yu), Ψ(~Xc , ~Yu))
2: p ← VariableMatrix(|Xc |,|Xu|+ 1)
3: φ(p)← >
4: for all ~c ∈ ExtremeAssignments(Γ(~Yu)) do
5: φ(p)← φ(p) ∧Ψ(p · ~c,~c)

6: if SMT(φ(p)) then
7: return GetModel()
8: return ⊥
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Incremental Weakening for STPU
Example

y1

x1

3

Observed uncontrollable
offsets:

∅
{y1}
{y2}
{y1, y2}

Intuition
If we do not observe the i-th variable, the i-th column in the matrix is
filled with 0.
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Incremental Weakening

Idea
Start from strong controllability check (polynomial), and search for a
strategy depending on a subset of ~Yu.

1: procedure IWLinearStrategy(Γ(~Yu), Ψ(~Xc , ~Yu))
2: while ~p ← GetHeuristicPivots(Γ(~Yu)) do
3: ~n← {y ∈ ~Yu | y 6∈ ~p}
4: η(~Xc , ~p)← SC Enc(Γ(~n), Ψ(~Xc ,~n))
5: res ← LinearStrategy(Γ(~p), η(~Xc , ~p))
6: if res 6= None then
7: return res
8: return ⊥

38/49



Outline
1 Temporal Problems (with Uncertainty)

2 Background

3 Strong Controllability via SMT
DTPU encodings
TCSPU specific encodings
Experimental Evaluation

4 Weak Controllability via SMT
Decision Problem
Strategies
Linear strategies
Piecewise linear strategies
Experimental Evaluation

5 Conclusion



Definitions

Piecewise linear strategies
f is a piecewise linear strategy if it has the form

f (~Yu) =̇ If φ1(~Yu) then A1 · ~Yu + ~b1;
If φ2(~Yu) then A2 · ~Yu + ~b2;
...

If φn(~Yu) then An · ~Yu + ~bn;

Simplexes
An n-simplex is an n-dimensional polytope which is the convex hull of its
n + 1 vertexes. E.g.

2-d → Triangle
3-d → Tetrahedron

39/49



Definitions

Piecewise linear strategies
f is a piecewise linear strategy if it has the form

f (~Yu) =̇ If φ1(~Yu) then A1 · ~Yu + ~b1;
If φ2(~Yu) then A2 · ~Yu + ~b2;
...

If φn(~Yu) then An · ~Yu + ~bn;

Simplexes
An n-simplex is an n-dimensional polytope which is the convex hull of its
n + 1 vertexes. E.g.

2-d → Triangle
3-d → Tetrahedron

39/49



Enumerating all the maximal simplexes for STPU

Example

y1

X2

3

Strategy:

If y2 ≤ −
1
3y1 + 1 then S1;

If y2 > −
1
3y1 + 1 then S2;
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All simplexes

Idea
Decompose the solution space in simplexes, and search a linear strategy
for each of them.

1: procedure GetStrategy(Γ(~Yu), Ψ(~Xc , ~Yu))
2: p ← ∅
3: for all s(~Yu) ∈ ExtremalSimplexes(Γ(~Yu)) do
4: l ← GetLinearStrategy(s(~Yu) Ψ(~Xc , ~Yu))
5: p ← p ∪ {( “if s(~Yu) then l ” )}
6: return p
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Lazy extraction for DTPU
Idea
Pick a simplex R(~Yu) in Γ(~Yu), find a linear strategy S(~Yu) for R(~Yu),
and remove the region where S(~Yu) is applicable from Γ(~Yu). Iterate until
Γ(~Yu) is empty.

Example

y1 y2

X2

13

Strategy:

If y1 ≥ y2 then S1;
If y1 < y2 then S2;
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Lazy extraction

Idea
Find a strategy S for a simplex, and remove from Γ(~Yu) all the region
satisfied by S.

1: procedure GetStrategy(Γ(~Yu), Ψ(~Xc , ~Yu))
2: p ← ∅
3: η(~Yu)← Γ(~Yu)

4: while SMT(η(~Yu)) do
5: s(~Yu)← Simplex(η(~Yu))
6: strategy(~Yu)← GetLinearStrategy(s(~Yu), Ψ(~Xc , ~Yu))
7: covered(~Yu)← Ψ(strategy(~Yu), ~Yu)

8: p ← p ∪ {( “if η(~Yu) ∧ covered(~Yu) then strategy ” )}
9: η(~Yu)← η(~Yu) ∧ ¬Ψ(s(~Yu), ~Yu)

10: return p
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Skin Crawler for DTPU
Idea
Explore the faces of the solution space projecting them until the entire
uncontrollable space is covered.
This builds a piecewise-linear strategy by combining hyperplanes
containing at least one facets of the solution space.

Example

y1 y2

X2

1

Strategy:

If y1 ≥ y2 then S1;
If y1 < y2 then S2;
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Skin Crawler
1: procedure SkinCrawlingSE(Γ( ~Yu), Ψ( ~Xc , ~Yu))
2: Assert(Ψ( ~Xc , ~Yu) ∧ Γ( ~Yu))
3: for all eqi ( ~Xc , ~Yu) ∈ Equalities(Ψ( ~Xc , ~Yu)) do
4: Assert(eqi ( ~Xc , ~Yu)→ (eqvi = 1))
5: Assert(eqi ( ~Xc , ~Yu) ∨ (eqvi = 0))
6: EQVs ← EQVs ∪ {eqvi}
7: strategy ← ∅; currentCost ← |EQVs|
8: while currentCost > 0 do
9: if SMT() = UNSAT then return strategy

10: Push()
11: Assert(cost = currentCost)
12: if SMT() = SAT then
13: model ← GetModel()
14: for all eqi ( ~Xc , ~Yu) ∈ Equalities(Ψ( ~Xc , ~Yu)) do
15: if model |= eqi ( ~Xc , ~Yu) then system← system ∪ {eqi ( ~Xc , ~Yu)}
16: Pop()
17: (covered( ~Yu), subStartegy)← GetFaceStrategy(strategy , system)
18: strategy ← strategy ∪ { “if covered( ~Yu) then subStartegy ”}
19: Assert((

∨
s( ~Xc , ~Yu)∈system ¬s( ~Xc , ~Yu)) ∧ (¬covered( ~Yu)))

20: else
21: currentCost ← currentCost − 1
22: Pop()
23: return ⊥
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Decision problem
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Scalability of strategy extraction algorithms
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Extracted strategy size
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Thanks

Thanks for your attention!
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