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SAT Solver Improvement

[Source: Le Berre&Biere 2011]

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout
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This Lecture

e Overview modern SAT solvers
— Conflict-Driven Clause Learning (CDCL) SAT solvers
» Note: Overview for non-experts

e SAT-based problem solving in practice
— How to do it?
» Encode problems to SAT
» Embed SAT solvers in applications
» lteratively use a SAT solver (i.e. as an NP oracle)
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What Next in CDCL Solvers?
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Preliminaries

e Variables: w,x,y,z,a,b,c,...

e Literals: w,X,y,a,..., but also —w,—y, ...

e Clauses: disjunction of literals or set of literals

e Formula: conjunction of clauses or set of clauses

e Model (satisfying assignment): partial /total mapping from
variables to {0,1}

e Formula can be SAT/UNSAT

e Example:
FLEMAFVsS)A(WVa)A(XVB)A(FVZVC)A(bVEV)

— Example models:
» {r,s,a b, c,d}
» {r,s,x,y,w,z,a,b,c,d}
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Resolution

e Resolution rule:

(Vv x) (Bvx)
(v B)
— Complete proof system for propositional logic

XVa (xVa) (yVva (yVva

— Extensively used with (CDCL) SAT solvers

e Self-subsuming resolution (with o/ C «):

(aVx) (o VX)

(@)

— () subsumes (a V x)

[DP60,R65]

[e.g. SP04,EBO5]
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F = (NDA(FVS)A
(wVva)A(xVaVvb)
(7VZVc)A(bVEV)

e Decisions / Variable Branchings:
w=1lx=1y=1z=1
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Unit Propagation

Level Dec. Unit Prop.

0 0 r——s
F = (r)A(FVs)A )
(wVva)A(xVaVvb) |
(FVZVc)A(bVEV) 2 x—b
3 y
e Decisions / Variable Branchings: \ \
w=1lx=1y=1z=1 4 z——>c—>d

e Additional definitions:
— Antecedent (or reason) of an implied assignment
» (bVvEvd)ford
— Associate assignment with decision levels
» w=101, x=102, y=103,z=104
» r=100,d=104, ..



Resolution Proofs

e Refutation of unsatisfiable formula by iterated resolution
operations produces resolution proof

e An example:
F=@ANMb)A(EV)A(aVb)A(aVvd)A(aVd)

e Resolution proof:

(aV b) (aVe)
N/
(¢) (bVe)
) N/
(b) (b)
N
1

e A modern SAT solver can generate resolution proofs using clauses
learned by the solver [ZM03]



Unsatisfiable Cores & Proof Traces

e CNF formula:

F = (©)AB)A(aVc)A(aVvb)A(aVd)A(aVd)

Level Dec. Unit Prop.

0 0 h—> 2
c— |

Implication graph with conflict



Unsatisfiable Cores & Proof Traces

e CNF formula:

Level Dec. Unit Prop.

0 0 b—s a

l

c— L

Proof trace L: (3V ¢) (aV b) (&) (b)



Unsatisfiable Cores & Proof Traces

e CNF formula:

Level Dec. Unit Prop. (aVv b) (aVe)
: N/
SRS = @  (bvo)
| N/
Y NG
1

Resolution proof follows structure of conflicts



Unsatisfiable Cores & Proof Traces

e CNF formula:

Level Dec. Unit Prop. (aVv b) (3Vec)
. N/
U= @  (bvo)
| N/
Y B W
1

Unsatisfiable subformula (core): (&), (b),(3V c),(aV b)
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The DPLL Algorithm
4.1 _ _

F = (xVy)A(avVb)A(aVb)A(aVb)A(aVb)
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lv
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What is a CDCL SAT Solver?

e Extend DPLL SAT solver with: [DP60,DLL62)
— Clause learning & non-chronological backtracking [MSS96,8597,297]

» Exploit UIPs [MSS96,55512]

» Minimize learned clauses [SB09,VG09]

» Opportunistically delete clauses [MSS96,MSS99, GNO2]

— Search restarts [GSK98,BMS00,H07,B0g]

Lazy data structures

» Watched literals [MMZZMo1]

Conflict-guided branching

» Lightweight branching heuristics [MMZZMo1]
» Phase saving [PDO7]



How Significant are CDCL SAT Solvers?

CPU Time (in seconds)

GRASP

DPLL

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout
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CDCL Solvers
Clause Learning, UIPs & Minimization
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Clause Learning

Level Dec. Unit Prop.

<1J i (avbh)  (zvb) (xvzVva)
pd
) , (avz)
3 > > a > | (;lz)
\b/

e Analyze conflict
— Reasons: x and z
» Decision variable & literals assigned at lower decision levels

— Create new clause: (xV z)

e Can relate clause learning with resolution



Clause Learning

Level Dec. Unit Prop.
0 0

1 X |_/_

e Analyze conflict
— Reasons: x and z
» Decision variable & literals assigned at lower decision levels
— Create new clause: (xV z)
e Can relate clause learning with resolution
— Learned clauses result from (selected) resolution operations
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Clause Learning — After Bracktracking

Level Dec. Unit Prop. Level Dec. Unit Prop.
0 0 0 0
1 X 1 X —> 7
2 y
3 z

e Clause (X V Z) is asserting at decision level 1

e Learned clauses are always asserting
e Backtracking differs from plain DPLL:

— Always bactrack after a conflict

[MSS96,MSS99]

[MMZZMo1]
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Unique Implication Points (UIPs)

Level Dec. Unit Prop. (bVv ) (wve) (xvavb) (yvzva)

o o -

e But ais an UIP

e Learn clause (w V XV 3)
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Multiple UIPs

Level Dec. Unit Prop. e First UIP:
0 0 — Learn clause (w V y V 3)
1 w
2 X
3 y

i
N
o €0
- €= o

| ]



Multiple UIPs

Level Dec. Unit Prop. o Bl e
0 0 — Learn clause (w V y V 3)
! v e But there can be more than 1
UIP
2 X
3 y
4




Multiple UIPs

Level Dec. Unit Prop. o Bl e
0 0 — Learn clause (w V y V 3)
! v e But there can be more than 1
UIP
2 x e Second UIP:

— Learn clause (x VZ V a)




Multiple UIPs

Level Dec. Unit Prop. e First UIP:
0 0 — Learn clause (w V y V 3)
! v e But there can be more than 1
UIP
2 x e Second UIP:
3 , — Learn clause (x VZ V a)
e In practice smaller clauses more
: i . . . effective

————
\ l l — Compare with (w VXV yVZ)



Multiple UIPs

Level Dec. Unit Prop. e First UIP:
0 0 — Learn clause (w V y V 3)
! v e But there can be more than 1
ulP
2 x e Second UIP:
3 — Learn clause (x VZ V a)
y .
e In practice smaller clauses more
: effective
27 ey [ a———>¢C
\ l l — Compare with (w VXV yV2Z)
s b——m> L
e Multiple UIPs proposed in GRASP [MSS96]
— First UIP learning proposed in Chaff [MMZZMo1]

e Not used in recent state of the art CDCL SAT solvers



Multiple UIPs

Level Dec. Unit Prop. e First UIP:
0 0 — Learn clause (w V y V 3)
! v e But there can be more than 1
ulP
2 x e Second UIP:
3 — Learn clause (x VZ V a)
y .
e In practice smaller clauses more
: effective
27 ey [ a———>¢C
\ l l — Compare with (w VXV yV2Z)
s b——m> L
e Multiple UIPs proposed in GRASP [MSS96]
— First UIP learning proposed in Chaff [MMZZMo1]

e Not used in recent state of the art CDCL SAT solvers

e Recent results show it can be beneficial on current instances [sssi2]
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Level Dec. Unit Prop.
0 0
1 x——> b
2 y ()?
3 z C m— |

e Learn clause (X V7V ZVb)



Clause Minimization |

Level Dec.  Unit Prop. (3ve) (2vbvVve) (xvyVvzva) (RVb)
0 0 l/

1 x ——> b (2vbva)

2 4 (xVyVZzVDh)

e Learn clause (X V7V ZVb)

e Apply self-subsuming resolution (i.e. local minimization) [SB09]
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Level  Dec. Unit Prop. (3ve) (2vbve) (xvyVvzva) (RVb)
0 0
1 B——>»

e Apply self-subsuming resolution (i.e. local minimization)

e Learn clause (X Vy V 2)
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Level Dec. Unit Prop.
0 0
1

—
| \,2<

e Learn clause (w V X V C)
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Level Dec. Unit Prop.
ol | E_ - _;
0 0

e Cannot apply self-subsuming
! resolution

w a @©
\ / — Resolving with reason of ¢ yields
b (WVXVaVbh)
5 e Can apply recursive minimization
X &
\\-' d——— 1

e Marked nodes: literals in learned clause [SB09]




Clause Minimization Il

Level Dec. Unit Prop.
ol | E_ - _}
0 0

e Cannot apply self-subsuming
w —> a —> c

resolution
— Resolving with reason of c yields
(wVvxVvavb)
e Can apply recursive minimization

e Marked nodes: literals in learned clause

e Trace back from ¢ until marked nodes or new nodes
— Learn clause if only marked nodes visited

[SB0Y]



Clause Minimization Il

Level Dec. Unit Prop.
ol | AV
0 0 .
Cannot apply self-subsuming
! resolution

w > a > C
\ / — Resolving with reason of c yields
b (WVXVaVbh)
5 Can apply recursive minimization
X &
\\-' d——— 1

Learn clause (w V X)

e Marked nodes: literals in learned clause [SB09]
e Trace back from ¢ until marked nodes or new nodes
— Learn clause if only marked nodes visited
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Search Restarts & Lazy Data Structures



Search Restarts |

e Heavy-tail behavior: [GSK98]
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— 10000 runs, branching randomization on industrial instance

e Use rapid randomized restarts (search restarts)
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Search Restarts ||

e Restart search after a number
of conflicts

e Increase cutoff after each
restart

— Guarantees completeness
— Different policies exist (see
refs)

e Works for SAT & UNSAT
instances. Why?

e Learned clauses effective after
restart(s)

cutoff
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Data Structures Basics

Each literal / should access clauses containing /
— Why? Unit propagation

Clause with k literals results in k references, from literals to the
clause

Number of clause references equals number of literals, L
— Clause learning can generate large clauses
» Worst-case size: O(n)
— Worst-case number of literals: O(m n)
— In practice,

Unit propagation slow-down worse than linear as clauses are learned !

Clause learning to be effective requires a more efficient
representation: Watched Literals
— Watched literals are one example of lazy data structures

» But there are others



Watched Literals

e Important states of a clause

[MMZZMo1]

literalsO = 4
literals1=0
size=5

EONEN

unit

literalsO = 4
literals1= 1
size=5

DX A

satisfied

literalsO = 5
literals1=0
size=5

ROXEO20N

unsatisfied




Watched Literals

[MMZZMo1]
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Watched Literals

[MMZZMo1]
e Important states of a clause ’ ¢ N ¢ ‘ N
unresolved
e Associate 2 references with @3 @l
each clause L
e Deciding unit requires W ‘ N unresolved
traversing all literals @5 @3 @1
o References unchanged when | I
backtracking W w unit
@5 @3 @7 @1
(I

satisfied

@5 @3 @ @7 @l

’ N ‘ N after backtracking to level 4

@3 @1
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Additional Key Techniques

o Lightweight branching [e.z. MMZZMO1]

— Use conflict to bias variables to branch on, associate score with
each variable
— Prefer recent bias by regularly decreasing variable scores

e Clause deletion policies

— Not practical to keep all learned clauses
— Delete less used clauses [e.g. MSS96,GN02,ES03]

e Proven recent techniques:

— Phase saving [PDO7]
— Literal blocks distance [AS09]
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CDCL — A Glimpse of the Future

e Clause learning techniques [e.&. ABHJS08,AS00]

— Clause learning is the key technique in CDCL SAT solvers
— Many recent papers propose improvements to the basic clause
learning approach

e Preprocessing & inprocessing

— Many recent papers [ JHB12,HIB11]
— Essential in some applications

e Application-driven improvements
— Incremental SAT

» Handling of assumptions due to MUS extractors [LB13]
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How to Solve Problems with SAT?

CNF encodings

— Represent problem as instance of SAT

— E.g. Eager SMT, Pseudo-Boolean constraints, etc.
Embedding of SAT solvers

— SAT solver used to implement domain specific algorithm

— White-box integration

— E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

SAT solvers as oracles

— Algorithm invokes SAT solver as an NP oracle
— Black-box integration
— E.g. MaxSAT, MUSes, (2)QBF, etc.

e Note:

— CNF encodings most often used with either black-box or white-box
approaches

— SAT techniques adapted in many other domains: QBF, ASP, ILP,
CSP, ...



SAT-Based Problem Solving

Pseudo-

Boolean Branch&-

Bound

Planning

Problem Solving

) with SAT .
Encodings Embeddings OPT SAT

MaxSAT

Oracles

Backbones

e Some apps associated with more than one concept: planning,
BMC, lazy clause generation, etc.



Examples of SAT-Based Problem Solving |

o Function problems in FPNP[log n]
— Unweighted Maximum Satisfiability (MaxSAT)

— Minimal Correction Subsets (MCSes)
— Minimal models

e Function problems in FPNP
— Weighted Maximum Satisfiability (MaxSAT)
— Minimal Unsatisfiable Subformulas (MUSes)
Minimal Equivalent Subformulas (MESes)
— Prime implicates

e Enumeration problems
— Models
— MUSes
— MCSes

MaxSAT



Examples of SAT-Based Problem Solving Il

e Decision problems in >5
- 2QBF

Function problems in FPZ>

— (Weighted) Quantified MaxSAT (QMaxSAT)
— Smallest MUS (SMUS)

Decision problems in PSPACE
- QBF

[1JMS13]
[1JMS13]
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SAT Oracles

What Next in SAT-Based Problem Solving?
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Encoding to CNF

e What to encode?
— Boolean formulas
» Tseitin's encoding
» Plaisted& Greenbaum'’s encoding
> oo
— Cardinality constraints
Pseudo-Boolean (PB) constraints
Can also translate to SAT:

Constraint Satisfaction Problems (CSPs)
Answer Set Programming (ASP)
Model Finding

vVvyyvyy

o Key issues:
— Encoding size
— Arc-consistency?
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Boolean Formulas



Representing Boolean Formulas / Circuits |

e Satisfiability problems can be defined on Boolean circuits/formulas

e Can represent circuits/formulas as CNF formulas [T68,PG]

— For each (simple) gate, CNF formula encodes the consistent
assignments to the gate's inputs and output

» Given z = OP(x, y), represent in CNF z <> OP(x,y)

— CNF formula for the circuit is the conjunction of CNF formula for
each gate

Fe=(aVve)A(bVc)A(aVbVi) Z:@c
Fe=(FVEIN(EVE)A(rVsVi) ;t




Representing Boolean Formulas / Circuits Il

_@C

a b c| Feabc)
0 0 O 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 O 0
1 0 1 1
1 1 0 1
1 1 1 0

Fe=(aVe)A(bVc)A(aVbVE)
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Representing Boolean Formulas / Circuits Il

e CNF formula for the circuit is the conjunction of the CNF formula
for each gate

— Can specify objectives with additional clauses

a — X
b_NAND c AND Y z=17?
D T

F = (aVvx)A(bVX)A(GVbBVEX)A
(xVy)A(cVy)AN(XVEVY)A

(yV2)A(dVZ)AN(yVdVZ)A(2)

e Note: z=d V (cA(=(anb)))
— No distinction between Boolean circuits and formulas
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Cardinality Constraints

e How to handle cardinality constraints, Zlexj <k?

— How to handle AtMost1 constraints, E}’Zl Xj

= General form: 37 | x; > k, with 1 € {<, <,

17
,>,>}

IIA

e Solution #1:
— Use PB solver

— Difficult to keep up with advances in SAT technology
— For SAT/UNSAT, best solvers already encode to CNF

» E.g. Minisat+, but also QMaxSat, MSUnCore, (W)PM2



Cardinality Constraints

e How to handle cardinality constraints, Zlexj <k?

— How to handle AtMost1 constraints, E}’Zl Xj

= General form: 37 | x; > k, with 1 € {<, <,

17
, >, >

A

e Solution #1:
— Use PB solver

— Difficult to keep up with advances in SAT technology
— For SAT/UNSAT, best solvers already encode to CNF

» E.g. Minisat+, but also QMaxSat, MSUnCore, (W)PM2

e Solution #2:

— Encode cardinality constraints to CNF
— Use SAT solver



Equalsl, AtlLeastl & AtMostl Constraints

n

i=1%j = 1 encode with (3°7_; x; < 1) A (D07 x5 > 1)

o lexj > 1: encode with (x3 Vxo V...V x,)

o ZJ’.’lej < 1 encode with:

— Pairwise encoding
» Clauses: O(n®) ; No auxiliary variables
Sequential counter [S05]

» Clauses: O(n) ; Auxiliary variables: O(n)

Bitwise encoding [PO7,FPO1]
» Clauses: O(nlogn) ; Auxiliary variables: O(logn)



Bitwise Encoding

e Encode Z}’lej < 1 with bitwise encoding:

o An example: x3 +x +x3 <1
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Bitwise Encoding

e Encode Z}’lej < 1 with bitwise encoding:
— Auxiliary variables vo,...,v,—1 ; r = [logn] (with n > 1)
- If x; =1, then vg...vj_1 = by ... bj_1, the binary encoding of j — 1
xp = (vo = bo)A. .. A(vjim1 = bj1) & (XV (v = bo)A...A(vj—1 = bj-1))
— Clauses (x; V (vi <+ b)) = (x;V [;), i=0,...,r — 1, where

> /,'EV,', ifb,':].
» i = v;, otherwise

o An example: x3 +x +x3 <1

j—1 wviv (% Vin)A (5 V)
x1 0 00 (V) A(%Vwv)
x 1 01 (3Vwvi)A(RVih)

X3 2 10



Bitwise

Encoding

e Encode Z}’lej < 1 with bitwise encoding:

Auxiliary variables vo,...,v,—1 ; r = [logn] (with n > 1)

If x; =1, then vp...vj—1 = by...bj_1, the binary encoding of j — 1
xp = (vo = bo)A. .. A(vjim1 = bj1) & (XV (v = bo)A...A(vj—1 = bj-1))
Clauses (xj V (vi <+ b)) = (X V i), i=0,...,r — 1, where

> /,'EV,', ifb,':].
» i = v;, otherwise

— If x; = 1, assignment to v; variables must encode j — 1
» All other x variables must take value 0

- If all x; = 0, any assignment to v; variables is consistent

— O(nlogn) clauses ; O(logn) auxiliary variables

e An example: x3 +x +x3 <1

i—1 wvw (% V) A (% V)
xx 0 00 (V) A(%Vwv)
x 1 01 (V) ARV ih)

X3 2 10



General Cardinality Constraints

o General form: 3°7 ; x; < k (or D27 ; x; > k)

— Sequential counters [S05]
» Clauses/Variables: O(n k)

— BDDs [ES06]
» Clauses/Variables: O(nk)

— Sorting networks (ES06]

» Clauses/Variables: O(nlog” n)
— Cardinality Networks: [ANORC09,ANORC11a]
» Clauses/Variables: O(nlog” k)
Pairwise Cardinality Networks: [czI10]



Outline

CNF Encodings

Pseudo-Boolean Constraints



Pseudo-Boolean Constraints

o General form: > 7 ; a;x < b

— Operational encoding [Wos]

» Clauses/Variables: O(n)
» Does not guarantee arc-consistency

— BDDs [ES06]
» Worst-case exponential number of clauses
— Polynomial watchdog encoding [BBROO]

» Let v(n) = log(n) log(amax)
» Clauses: O(n’v(n)) ; Aux variables: O(n’v(n))

Improved polynomial watchdog encoding [ANORC11b]

» Clauses & aux variables: O(n® log(amax))



Encoding PB Constraints with BDDs |

e Encode 3x1 +3x0 +x3 <3
e Construct BDD
— E.g. analyze variables by decreasing coefficients

e Extract ITE-based circuit from BDD




Encoding PB Constraints with BDDs |

e Encode 3x1 +3x0 +x3 <3
e Construct BDD
— E.g. analyze variables by decreasing coefficients

e Extract ITE-based circuit from BDD

xi 2 e
10
al b
z z
x 1 e x 2 e
0 1 0 1
a b a b
0 1
z z
x3s 2 ITE x3 3 e
0 1 0 1
al b] al o]
1 0 1 0



Encoding PB Constraints with BDDs I

e Encode 3x; +3x + x3 <3
e Extract ITE-based circuit from BDD

e Simplify and create final circuit:

Xy 2| ITE

X2 X3 X3 X2
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More on PB Constraints

 How about > 7 ; a;x = k ?
- Canuse (37 ajx; > k) A (D572, a7 % < k), but...

j=1
> aj xj = k is a subset-sum constraint

n
=1
(special case of a knapsack constraint)

» Cannot find all consequences in polynomial time [S03,FS02,T03]

e Example:
4x1 +3x0 +2x3 =05
- Replace by (4X1 + 3X2 + 2X3 2 5) N (4X1 + 3X2 + 2X3 S 5)

— Let X = 0
— Either constraint can still be satisfied, but not both
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CSP Constraints

e Many possible encodings:

Direct encoding

Log encoding

Support encoding
Log-Support encoding

Order encoding for finite linear CSPs

[dK89,GJ96,W00]

[W00]

[K90,G02]

[Go7]

[TTKBO09)



Direct Encoding for CSP w/ Binary Constraints

Variable x; with domain D;, with m; = |Dj|

Represent values of x; with Boolean variables x; 1, ..., X m,

o mj J—
Require )7 xjx =1 |
— Suffices to require > " x; , > 1 [Woo]

If the pair of assignments x; = v; A x; = v; is not allowed, add
binary clause (i, V Xj.,)
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SAT Embeddings



Embedding SAT Solvers

SAT Solver

e

Assignments + Assignments +
Constraints Explanations

Constraint Propagators
/ Theory Solvers

Modify SAT solver to interface
problem-specific propagators (or
theory solvers)

Typical interface:

— SAT solvers communicates
assignments/constraints to
propagators

— Retrieve resulting assignments or
explanations for inconsistency

Well-known examples (many more):

— Branch&bound PB optimization

— Non-clausal SAT solvers

— Lazy SMT solving (see later talks)

Key problem:

— Keeping up with improvements in
SAT solvers



Pseudo-Boolean Constraints & Optimization

e Pseudo-Boolean Constraints:

— Boolean variables: xq,...,x,
— Linear inequalities:

Zaijlj > bi, e {Xj!)_(j}vxj € {071}7‘9')”[31' € Ng
JEN
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Pseudo-Boolean Constraints & Optimization

e Pseudo-Boolean Constraints:

— Boolean variables: xq,...,x,
— Linear inequalities:

Zaijlj > b, /J € {Xj!)_(j}vxj € {Ovl}vafj’bi € N(T
JjeEN

¢ Pseudo-Boolean Optimization (PBO):

minimize », @05
JEN

subject to > ajjlj > bj,
JEN

/j € {)97)_(]}7)9' € {Ovl}vafjvbhcj € N(J)r

e Branch and bound (B&B) PBO algorithm:
— Extend SAT solver
— Must develop propagator for PB constraints
— B&B search for computing optimum cost function value
» Trivial upper bound: all x; =1

[MMS00]



Limitations with Embeddings

e B&B MaxSAT solving:

— Cannot use unit propagation
— Cannot learn clauses

e MUS extraction:
— Decision of clauses to include in MUS based on unsatisfiable
outcomes
— No immediate gain from embedding SAT solvers
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Practical Aspects of Using SAT Oracles

e Incremental vs. non-incremental SAT [ES03]
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Practical Aspects of Using SAT Oracles

e Incremental vs. non-incremental SAT [ES03]
— Incremental SAT:
» Replace each clause (Ci) with (G V 3;), where a; is assumption
variable
» When calling SAT solver, each assumption can be assigned 1, 0, or
be left unassigned
» a; = 1 to activate clause
» a; = 0 to deactivate clause C;
» Add clause (3;) to delete ;
» Note: incremental SAT enables clause reuse
— Non-incremental SAT:
» Submit complete formula to SAT solver in each iteration
» Note: difficult to instrument clause reuse

e What does the SAT oracle compute/return?
1. Yes/No: (st) < SAT(F)
2. Compute model: (st,u) < SAT(F)
3. Compute unsatisfiable cores: (st, j1,U) <= SAT(F)
4. Compute proof traces/resolution proof: (st,u,T) < SAT(F)
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Defining MUSes

X6 V Xo —Xg V Xo —x2 V X1 —X1
—Xg V Xg X6 V —1Xg Xo V Xy X4 V Xg
X7 V X —x7 V Xs —X5 V X3 X3

Formula is unsatisfiable but not irreducible

e Can remove clauses, and formula still unsatisfiable

A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and
irreducible subformula

How to compute an MUS?



Deletion-Based MUS Extraction

Input : Unsatisfiable CNF Formula F
Output: MUS M
begin
M~ F // MUS over-approximation
foreach c € M do
if not SAT(M \ {c}) then
L | M M\{c} // 1f UNSAT(M \ {c}), then c & M
return M // Final M is MUS

end

e Number of calls to SAT solver: O(|F))



Deletion-Based MUS Extraction

Input : Unsatisfiable CNF Formula F
Output: MUS M
begin
M~ F // MUS over-approximation
foreach c € M do
if not SAT(M \ {c}) then
L LM%M\{C} // Remove c¢ from M
return M // Final M is MUS

end

e Number of calls to SAT solver: O(|F))
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SAT instance — keep clause (—x2)
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(ﬁXl V X2)
(X1 V X2)
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Computed MUS



More on MUS Extraction

Algorithm # Oracle Calls Reference
Insertion (Default) O(m x k) [sPag]
Deletion (Default) O(m) [CD91,BDTWO3]
QuickXplain O(k x (1+1log 7)) [J01,J04]
Dichotomic O(k x log m) [HLSBOG]
Insertion with Relaxation Variables ~ O(m) [MSL11]
Deletion with Model Rotation O(m) [BLMS12,M5L11]
Progression O(k x log(1+ 7)) [MSJB13]




More on MUS Extraction

Algorithm # Oracle Calls Reference
Insertion (Default) O(m x k) [sPag]
Deletion (Default) O(m) [CD91,BDTWO3]
QuickXplain O(k x (1+1log 7)) [J01,J04]
Dichotomic @)

(
(
(k
(k x log m) [HLSBOG]
(m
(m
(

Insertion with Relaxation Variables O(m) [MSL11]
Deletion with Model Rotation O(m) [BLMS12,MSL11]
Progression O(k x log(1+ 7)) [MSJB13]
e Additional Techniques:
— Restrict formula to unsatisfiable subsets [BDTW93,HLSB06, DHNO6,MSL11]
— Check redundancy condition [vMW08, MSL11,BLMS12]

— Model rotation, recursive model rotation, etc. [vsL11.BMS11,BLMS12,W12]
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Defining Maximum Satisfiability
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e Given unsatisfiable formula, find largest subset of clauses that is
satisfiable
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Defining Maximum Satisfiability

Xe V X2 —Xg V Xo —x2 V X1 sl
—Xg V Xg Xe V —Xg X2 V Xg —1xq V Xz
x7 V X5 —x7 V Xz —1x5 V X3 X3

e Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

e A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

e The MaxSAT solution is one of the smallest MCSes
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MaxSAT Problem(s)

MaxSAT:
— All clauses are soft
— Maximize number of satisfied soft clauses
— Minimize number of unsatisfied soft clauses

Partial MaxSAT:

— Hard clauses must be satisfied
— Minimize number of unsatisfied soft clauses

Weighted MaxSAT

— Weights associated with (soft) clauses
— Minimize sum of weights of unsatisfied clauses

Weighted Partial MaxSAT
— Weights associated with soft clauses
— Hard clauses must be satisfied
— Minimize sum of weights of unsatisfied soft clauses



Definitions

e Cost of assignment:
— Sum of weights of unsatisfied clauses
e Optimum solution (OPT):
— Assignment with minimum cost
e Upper Bound (UB):
— Assignment with cost not less than OPT
- Eg. ZQEW w; + 1; hard clauses may be inconsistent

e Lower Bound (LB):

— No assignment with cost no larger than LB
— E.g. —1; it may be possible to satisfy all soft clauses



Definitions

Cost of assignment:
— Sum of weights of unsatisfied clauses
e Optimum solution (OPT):
— Assignment with minimum cost
Upper Bound (UB):
— Assignment with cost not less than OPT
- Eg. ZQEW w; + 1; hard clauses may be inconsistent
Lower Bound (LB):

— No assignment with cost no larger than LB
— E.g. —1; it may be possible to satisfy all soft clauses

OPT

LB uB
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Iterative SAT Solving — Refine UB

OPT

LB UB,

Require > w;r; < UBy —1
While SAT, refine UB
— New UB given by cost of unsatisfied clauses, i.e. > w; r;
Repeat until constraint > w; r; < UB; — 1 becomes UNSAT
— UBy denotes the optimum value

Worst-case # of iterations exponential on instance size

Example tools:

Minisat+: CNF encoding of constraints [ES06]
SATA4J: native handling of constraints [LBP10]
— QMaxSat: CNF encoding of constraints [KZFH12]



Fu&Malik's Core-Guided Approach

Xe V X2 —1Xg V Xo —1x2 V X1
—Xg V Xg X6 V —1Xg X2 V Xq
x7 V Xz —x7 V X5 —X5 V X3

Example CNF formula

—|X1

—Xg V X5

—|X3
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Xe V X2 —1Xg V Xo —1x2 V X1
—Xg V Xg X6 V —Xg X2 V Xg
x7 V X5 —x7 V X5 —X5 V X3

—|X1

—Xg V Xs

—|X3

Formula is UNSAT; OPT < || — 1; Get unsat core
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@2 —Xe V X —xo Vx1Vnr —x1Vr
—1Xg V Xg Xp V —1Xg X2 V x4V 13 =Xy @

—x7 V X5 —X5 V X3V 5 —x3Vrg

Formula is (again) UNSAT; OPT < || — 2; Get unsat core



Fu&Malik's Core-Guided Approach

Xe V xoVrg —Xg VXxoVrg —xoVx1VrVrg —x1VrnVrg
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2?21 <1 }i7 <1

Add new relaxation variables and AtMostl constraint



Fu&Malik's Core-Guided Approach

X V XoVry —Xg VXoVrg —x2Vx1VnVn —x1VrnVro
—Xg V Xg X6 V —1Xg X2 V xaVr3 —Xq V X5V Iy
x7 V x5V —x7VXxsVro —x5VXx3VrsVrn3 —x3VirgVrig

6 14
Yiqri<l1 i—rri <1

Instance is now SAT



Fu&Malik's Core-Guided Approach

Xe V xoVrg —Xg VXxoVrg —xoVx1VrVrg —x1VrnVrg
—Xg V Xg X6 V —Xxg X2 V xa4Vr3 —Xg V X5V 1y
x7V x5V —x7VXxsVro —x5Vx3VrsVrn3 —x3VirgVrig

Z?:lriSI }i7r,-§1

MaxSAT solution is |p| —Z =12 —2 =10



Organization of Fu&Malik's Algorithm

e Clauses characterized as:

— Soft: initial set of soft clauses
— Hard: initially hard, or added during execution of algorithm

» E.g. clauses from AtMostl constraints

e While exist unsatisfiable cores [FMos]

— Add fresh set B of relaxation variables to soft clauses in core
— Add new AtMost1 constraint

> bi<1

b;eB

» At most 1 relaxation variable from set B can take value 1

e (Partial) MaxSAT solution is |¢| —Z
— Z: number of iterations (= number of computed unsat cores)



Organization of Fu&Malik's Algorithm

e Clauses characterized as:

— Soft: initial set of soft clauses
— Hard: initially hard, or added during execution of algorithm

» E.g. clauses from AtMostl constraints

e While exist unsatisfiable cores [FMos]

— Add fresh set B of relaxation variables to soft clauses in core
— Add new AtMost1 constraint

RS
bEB
» At most 1 relaxation variable from set B can take value 1

e (Partial) MaxSAT solution is |¢| —Z
— Z: number of iterations (= number of computed unsat cores)

e Can be adapted for weighted MaxSAT [ABL09a,MMSPOO]



Oracle-Based MaxSAT Solving |

e lterative: [MHLPMS13]
— Linear search SAT/UNSAT (refine UB) [e.g. LBP10]
— Linear search UNSAT /SAT (refine LB)
— Binary search [e.g. FMOG6]
— Bit-based
— Mixed linear/binary search [e.g. KZFH12]
e Core-Guided: [MHLPMS13,ABL13]
- FM/(W)MSU1.X/WPM1 [FMO06,MSM08,MMSP09, ABL09a,ABGL12]
- (W)MSU3 [MSPO7]
- (W)MSU4 [MSPOg]
- (W)PM2 [ABLO09a,ABLO9b,ABL10,ABGL13]
— Core-guided binary search (w/ disjoint cores) [HMMS11,MHMS12]

» Bin-Core, Bin-Core-Dis, Bin-Core-Dis2

e |terative subsetting [DB11,DB13a,DB13b]



Oracle MaxSAT Solving Il

e A sample of recent algorithms:

Algorithm # Oracle Calls
Linear search SU Exponential
Binary search Linear
WMSU1/WPM1 Exponential*
WPM?2 Exponential*
Bin-Core-Dis Linear

Iterative subsetting Exponential

[FM06,MSM08,MMSP09,ABL09a,ABGL12]

[HMMS11,MHMS12]

[DB11,DB13a,DB13b]

* Weighted case; depends on computed cores

e Example MaxSAT solvers:

— MSUnCore; WPM1, WPM2; QMaxSAT; SAT4J; etc.
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Problem Statement

[GMN0Y]

Given: IXVY. ¢, where ¢ is a propositional formula
Question: Is there an assignment 7 to X such that VY. ¢[X/7]?



Problem Statement
[GMNO9]

Given: IXVY. ¢, where ¢ is a propositional formula
Question: Is there an assignment 7 to X such that VY. ¢[X/7]?

Example

Ixt, xo Yy1, yo. (x1 = y1) A (x2 = y2)

solution: x1 =0,x =0



Motivation

o ¥ complete

e interesting problems in this class, e.g. certain nonmonotonic
reasoning, aspects of model checking, conformant planning

e separate track at QBF Eval
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Y 7
X
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Expanding AXVY. ¢ into SAT

IXVY. ¢ — SAT( A ¢[Y/,,L]>

MGB‘Yl

Example

E]Xl,XQVy]_,yz. (X1 — y1) A\ (X2 — y2) AN ()_<1 V )_<2)

Expansion:
(X1 — 0) VAN (X2 — 0) VAN (X1 VX2)
AN (x4 0)Ae o 1)AGLY X)
AN (X1(—)l)/\(X2<—)O)/\(X1 \/X2)
VAN (X1<—>1)/\(X2<—>1)/\(X1 \/)_(2)
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Abstraction of IXVY. ¢

e Consider only some set of assignments w C B!Y/

N LY /u]

peEW

e If a solution to the problem is a solution to the abstraction

A oly/m = N oly/ul

MGBM HEW

e But not the other way around, a solution to an abstraction is not
necessarily a solution to the original problem.



CEGAR Loop

input : IXVY.¢
output: (true, 7) if there exists 7 s.t. VY. ¢[X /7],
(false,—) otherwise

w + 0;
while true do
(outcy, 7) = SAT(A e, #[Y /1) // find a candidate
if outcy = false then
‘ return (false,-); // no candidate found
end
if “7is a solution”; // solution check
then
| return (true, 7)
else
‘ “Grow w"; // refinement
end

end



CEGAR Loop

input : IXVY.¢
output: (true, 7) if there exists 7 s.t. VY. ¢[X /7],
(false,—) otherwise

w0
while true do
(outcy, 7) < SAT(A e, LY /1)) // find a candidate
if outcy = false then
‘ return (false,-); // no candidate found
end
if “7 is a solution”’; // solution check
then
| return (true, 7)
else
‘ “Grow w"; // refinement
end

end
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Testing for Solution

A value 7 is a solution to IXVY. ¢ iff
VY. o[X /7] iff UNSAT(—¢[X/T])
If SAT(—¢[X/7]) by some p, then p is a counterexample to 7
Example
Ixt, x2 Yy, ya. (= y1) A (e = y2)
e candidate: x; =1, =1
e counterexamples: y; =0,y, =0

)’1:07}/2:1
yi=1y,=0
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T1




Refinement

T2

T1




Refinement

XX x




AReQS (Abstraction Refinement-based QBF Solver)

input : IXVY.¢
output: (true, 7) if there exists 7 s.t. VY. ¢[X /7],
(false,—) otherwise

w <+ 0; // start with the empty expansion
while true do
(outcy, 7) < SAT(A e, LY /1)) // find a candidate
if outcy = false then
‘ return (false,-); // no candidate found
end
(outcy, ) < SAT (—¢[X/7]); // find a counterexample
if outco = false then
‘ return (true, 7) ; // candidate is a solution
end
w+—wU{p}; // refine

end



AReQS — Conclusions

e ... is a CEGAR-based algorithm for 2QBF [UMs11]
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AReQS — Conclusions

.. is a CEGAR-based algorithm for 2QBF [MS11]

. uses SAT solver as an oracle

... gradually expands given 2QBF into a SAT formula

e Can be extended to arbitrary number of levels by recursion
(RAReQS) [JKMSC12]



Outline

What Next in SAT-Based Problem Solving?



SAT-Based Problem Solving — A Glimpse of the Future

Remarkable (and increasing) number of applications of SAT

Can use SAT for solving problems in different complexity classes
- FP"Pllog n], FPNP, ...
— E.g. tackling problems in the polynomial hierarchy

e Many new recent algorithms for concrete problems
— MaxSAT
— MUSes
— MCSes
— Enumeration problems

e Better encodings?

White-box vs. black-box approaches?
— But use of oracles inevitable in many cases



Thank You
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