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SAT Solver Improvement

[Source: Le Berre&Biere 2011]
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This Lecture

• Overview modern SAT solvers
– Conflict-Driven Clause Learning (CDCL) SAT solvers

I Note: Overview for non-experts

• SAT-based problem solving in practice

– How to do it?

I Encode problems to SAT
I Embed SAT solvers in applications
I Iteratively use a SAT solver (i.e. as an NP oracle)
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Preliminaries

• Variables: w , x , y , z , a, b, c , . . .

• Literals: w , x̄ , ȳ , a, . . . , but also ¬w ,¬y , . . .
• Clauses: disjunction of literals or set of literals

• Formula: conjunction of clauses or set of clauses

• Model (satisfying assignment): partial/total mapping from
variables to {0, 1}

• Formula can be SAT/UNSAT

• Example:

F , (r) ∧ (r̄ ∨ s) ∧ (w̄ ∨ a) ∧ (x̄ ∨ b) ∧ (ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

– Example models:

I {r , s, a, b, c, d}
I {r , s, x̄ , y , w̄ , z , ā, b, c, d}
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Resolution

• Resolution rule: [DP60,R65]

(α ∨ x) (β ∨ x̄)
(α ∨ β)

– Complete proof system for propositional logic

– Extensively used with (CDCL) SAT solvers

• Self-subsuming resolution (with α′ ⊆ α): [e.g. SP04,EB05]

(α ∨ x) (α′ ∨ x̄)
(α)

– (α) subsumes (α ∨ x)
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Unit Propagation

F = (r) ∧ (r̄ ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)

(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

• Additional definitions:
– Antecedent (or reason) of an implied assignment

I (b̄ ∨ c̄ ∨ d) for d

– Associate assignment with decision levels

I w = 1 @ 1, x = 1 @ 2, y = 1 @ 3, z = 1 @ 4
I r = 1 @ 0, d = 1 @ 4, ...
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(ȳ ∨ z̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d)

• Decisions / Variable Branchings:
w = 1, x = 1, y = 1, z = 1

Level Dec. Unit Prop.

0

1

2

3

4

∅

w

x

y

z

a

b

c d

r s

• Additional definitions:
– Antecedent (or reason) of an implied assignment

I (b̄ ∨ c̄ ∨ d) for d

– Associate assignment with decision levels

I w = 1 @ 1, x = 1 @ 2, y = 1 @ 3, z = 1 @ 4
I r = 1 @ 0, d = 1 @ 4, ...



Unit Propagation

F = (r) ∧ (r̄ ∨ s)∧
(w̄ ∨ a) ∧ (x̄ ∨ ā ∨ b)
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Resolution Proofs

• Refutation of unsatisfiable formula by iterated resolution
operations produces resolution proof

• An example:
F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)

• Resolution proof:

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)

• A modern SAT solver can generate resolution proofs using clauses
learned by the solver [ZM03]



Unsatisfiable Cores & Proof Traces

• CNF formula:

F = (c̄) ∧ (b̄) ∧ (ā ∨ c) ∧ (a ∨ b) ∧ (a ∨ d̄) ∧ (ā ∨ d̄)
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Implication graph with conflict
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Level Dec. Unit Prop.

0 ∅ b̄

c̄

a

⊥

⊥

(b̄) (b)

(c̄) (b ∨ c)

(a ∨ b) (ā ∨ c)
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Unsatisfiable Cores & Proof Traces

• CNF formula:
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ȳ
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y

a ā
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What is a CDCL SAT Solver?

• Extend DPLL SAT solver with: [DP60,DLL62]

– Clause learning & non-chronological backtracking [MSS96,BS97,Z97]

I Exploit UIPs [MSS96,SSS12]

I Minimize learned clauses [SB09,VG09]

I Opportunistically delete clauses [MSS96,MSS99,GN02]

– Search restarts [GSK98,BMS00,H07,B08]

– Lazy data structures

I Watched literals [MMZZM01]

– Conflict-guided branching

I Lightweight branching heuristics [MMZZM01]

I Phase saving [PD07]

– ...



How Significant are CDCL SAT Solvers?
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Clause Learning

Level Dec. Unit Prop.
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• Analyze conflict

– Reasons: x and z

I Decision variable & literals assigned at lower decision levels

– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations
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(ā ∨ z̄)

(x̄ ∨ z̄)

• Analyze conflict
– Reasons: x and z

I Decision variable & literals assigned at lower decision levels

– Create new clause: (x̄ ∨ z̄)

• Can relate clause learning with resolution

– Learned clauses result from (selected) resolution operations



Clause Learning – After Bracktracking
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• Clause (x̄ ∨ z̄) is asserting at decision level 1

• Learned clauses are always asserting [MSS96,MSS99]

• Backtracking differs from plain DPLL:

– Always bactrack after a conflict [MMZZM01]
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Multiple UIPs
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• First UIP:

– Learn clause (w̄ ∨ ȳ ∨ ā)

• But there can be more than 1
UIP

• Second UIP:

– Learn clause (x̄ ∨ z̄ ∨ a)

• In practice smaller clauses more
effective

– Compare with (w̄ ∨ x̄ ∨ ȳ ∨ z̄)

• Multiple UIPs proposed in GRASP [MSS96]

– First UIP learning proposed in Chaff [MMZZM01]

• Not used in recent state of the art CDCL SAT solvers

• Recent results show it can be beneficial on current instances [SSS12]
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(x̄ ∨ ȳ ∨ z̄ ∨ b̄)

(x̄ ∨ b)

(x̄ ∨ ȳ ∨ z̄)
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• Marked nodes: literals in learned clause [SB09]

• Trace back from c until marked nodes or new nodes

– Learn clause if only marked nodes visited
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Search Restarts I

• Heavy-tail behavior: [GSK98]

– 10000 runs, branching randomization on industrial instance

• Use rapid randomized restarts (search restarts)



Search Restarts II

• Restart search after a number
of conflicts

• Increase cutoff after each
restart

– Guarantees completeness
– Different policies exist (see

refs)

• Works for SAT & UNSAT
instances. Why?

• Learned clauses effective after
restart(s)

solutioncutoffcutoff
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Data Structures Basics

• Each literal l should access clauses containing l

– Why?

• Clause with k literals results in k references, from literals to the
clause

• Number of clause references equals number of literals, L

– Clause learning can generate large clauses

I Worst-case size: O(n)

– Worst-case number of literals: O(mn)
– In practice,

Unit propagation slow-down worse than linear as clauses are learned !

• Clause learning to be effective requires a more efficient
representation:

– Watched literals are one example of lazy data structures

I But there are others
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[MMZZM01]

• Important states of a clause

• Associate 2 references with
each clause

• Deciding unit requires
traversing all literals

• References unchanged when
backtracking
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Additional Key Techniques

• Lightweight branching [e.g. MMZZM01]

– Use conflict to bias variables to branch on, associate score with
each variable

– Prefer recent bias by regularly decreasing variable scores

• Clause deletion policies

– Not practical to keep all learned clauses
– Delete less used clauses [e.g. MSS96,GN02,ES03]

• Proven recent techniques:

– Phase saving [PD07]

– Literal blocks distance [AS09]
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CDCL – A Glimpse of the Future

• Clause learning techniques [e.g. ABHJS08,AS09]

– Clause learning is the key technique in CDCL SAT solvers
– Many recent papers propose improvements to the basic clause

learning approach

• Preprocessing & inprocessing

– Many recent papers [e.g. JHB12,HJB11]

– Essential in some applications

• Application-driven improvements
– Incremental SAT

I Handling of assumptions due to MUS extractors [LB13]



Part II

SAT-Based Problem Solving



How to Solve Problems with SAT?

• CNF encodings

– Represent problem as instance of SAT
– E.g. Eager SMT, Pseudo-Boolean constraints, etc.

• Embedding of SAT solvers

– SAT solver used to implement domain specific algorithm
– White-box integration
– E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

• SAT solvers as oracles

– Algorithm invokes SAT solver as an NP oracle
– Black-box integration
– E.g. MaxSAT, MUSes, (2)QBF, etc.

• Note:

– CNF encodings most often used with either black-box or white-box
approaches

– SAT techniques adapted in many other domains: QBF, ASP, ILP,
CSP, ...



How to Solve Problems with SAT?

• CNF encodings

– Represent problem as instance of SAT
– E.g. Eager SMT, Pseudo-Boolean constraints, etc.

• Embedding of SAT solvers

– SAT solver used to implement domain specific algorithm
– White-box integration
– E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

• SAT solvers as oracles

– Algorithm invokes SAT solver as an NP oracle
– Black-box integration
– E.g. MaxSAT, MUSes, (2)QBF, etc.

• Note:

– CNF encodings most often used with either black-box or white-box
approaches

– SAT techniques adapted in many other domains: QBF, ASP, ILP,
CSP, ...



How to Solve Problems with SAT?

• CNF encodings

– Represent problem as instance of SAT
– E.g. Eager SMT, Pseudo-Boolean constraints, etc.

• Embedding of SAT solvers

– SAT solver used to implement domain specific algorithm
– White-box integration
– E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

• SAT solvers as oracles

– Algorithm invokes SAT solver as an NP oracle
– Black-box integration
– E.g. MaxSAT, MUSes, (2)QBF, etc.

• Note:

– CNF encodings most often used with either black-box or white-box
approaches

– SAT techniques adapted in many other domains: QBF, ASP, ILP,
CSP, ...



How to Solve Problems with SAT?

• CNF encodings

– Represent problem as instance of SAT
– E.g. Eager SMT, Pseudo-Boolean constraints, etc.

• Embedding of SAT solvers

– SAT solver used to implement domain specific algorithm
– White-box integration
– E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

• SAT solvers as oracles

– Algorithm invokes SAT solver as an NP oracle
– Black-box integration
– E.g. MaxSAT, MUSes, (2)QBF, etc.

• Note:

– CNF encodings most often used with either black-box or white-box
approaches

– SAT techniques adapted in many other domains: QBF, ASP, ILP,
CSP, ...



SAT-Based Problem Solving

Problem Solving
with SAT

Embeddings

Pseudo-
Boolean

Branch&-
Bound

Enumeration

OPT SAT

Lazy SMT

Lazy
Cl. Gen.

Oracles

MaxSAT

MUS

MCS

Min. Mod-
els

Backbones

Enumeration

CEGAR
SMT

CEGAR
QBF

MC: ic3

Encodings

ATPG

Eager SMT

Planning

BMC

• Some apps associated with more than one concept: planning,
BMC, lazy clause generation, etc.



Examples of SAT-Based Problem Solving I

• Function problems in FPNP[log n]

– Unweighted Maximum Satisfiability (MaxSAT)
– Minimal Correction Subsets (MCSes)
– Minimal models
– ...

• Function problems in FPNP

– Weighted Maximum Satisfiability (MaxSAT)
– Minimal Unsatisfiable Subformulas (MUSes)
– Minimal Equivalent Subformulas (MESes)
– Prime implicates
– ...

• Enumeration problems

– Models
– MUSes
– MCSes
– MaxSAT
– ...



Examples of SAT-Based Problem Solving II

• Decision problems in ΣP
2

– 2QBF
– ...

• Function problems in FPΣP
2

– (Weighted) Quantified MaxSAT (QMaxSAT) [IJMS13]

– Smallest MUS (SMUS) [IJMS13]

– ...

• Decision problems in PSPACE

– QBF
– ...

• ...
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Encoding to CNF

• What to encode?
– Boolean formulas

I Tseitin’s encoding
I Plaisted&Greenbaum’s encoding
I ...

– Cardinality constraints
– Pseudo-Boolean (PB) constraints
– Can also translate to SAT:

I Constraint Satisfaction Problems (CSPs)
I Answer Set Programming (ASP)
I Model Finding
I ...

• Key issues:

– Encoding size
– Arc-consistency?
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Representing Boolean Formulas / Circuits I

• Satisfiability problems can be defined on Boolean circuits/formulas

• Can represent circuits/formulas as CNF formulas [T68,PG86]

– For each (simple) gate, CNF formula encodes the consistent
assignments to the gate’s inputs and output

I Given z = OP(x , y), represent in CNF z ↔ OP(x , y)

– CNF formula for the circuit is the conjunction of CNF formula for
each gate

Fc = (a ∨ c) ∧ (b ∨ c) ∧ (ā ∨ b̄ ∨ c̄)

Ft = (r̄ ∨ t) ∧ (s̄ ∨ t) ∧ (r ∨ s ∨ t̄)

NAND

OR

a
b

c

r
s t



Representing Boolean Formulas / Circuits II

NAND
a
b

c

a b c Fc(a,b,c)

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Fc = (a ∨ c) ∧ (b ∨ c) ∧ (ā ∨ b̄ ∨ c̄)



Representing Boolean Formulas / Circuits III

• CNF formula for the circuit is the conjunction of the CNF formula
for each gate

– Can specify objectives with additional clauses

NAND
AND

OR

a
b c

d

x y
z = 1?

F = (a ∨ x) ∧ (b ∨ x) ∧ (ā ∨ b̄ ∨ x̄) ∧
(x ∨ ȳ) ∧ (c ∨ ȳ) ∧ (x̄ ∨ c̄ ∨ y) ∧
(ȳ ∨ z) ∧ (d̄ ∨ z) ∧ (y ∨ d ∨ z̄) ∧ (z)
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– No distinction between Boolean circuits and formulas
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Cardinality Constraints

• How to handle cardinality constraints,
∑n

j=1 xj ≤ k ?

– How to handle AtMost1 constraints,
∑n

j=1 xj ≤ 1 ?

– General form:
∑n

j=1 xj ./ k , with ./ ∈ {<,≤,=,≥, >}

• Solution #1:

– Use PB solver
– Difficult to keep up with advances in SAT technology
– For SAT/UNSAT, best solvers already encode to CNF

I E.g. Minisat+, but also QMaxSat, MSUnCore, (W)PM2

• Solution #2:

– Encode cardinality constraints to CNF
– Use SAT solver
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Equals1, AtLeast1 & AtMost1 Constraints

•
∑n

j=1 xj = 1: encode with (
∑n

j=1 xj ≤ 1) ∧ (
∑n

j=1 xj ≥ 1)

•
∑n

j=1 xj ≥ 1: encode with (x1 ∨ x2 ∨ . . . ∨ xn)

•
∑n

j=1 xj ≤ 1 encode with:

– Pairwise encoding

I Clauses: O(n2) ; No auxiliary variables

– Sequential counter [S05]

I Clauses: O(n) ; Auxiliary variables: O(n)

– Bitwise encoding [P07,FP01]

I Clauses: O(n log n) ; Auxiliary variables: O(log n)

– ...



Bitwise Encoding

• Encode
∑n

j=1 xj ≤ 1 with bitwise encoding:

– Auxiliary variables v0, . . . , vr−1 ; r = dlog ne (with n > 1)

– If xj = 1, then v0 . . . vj−1 = b0 . . . bj−1, the binary encoding of j − 1

xj → (v0 = b0)∧. . .∧(vj−1 = bj−1)⇔ (x̄j∨(v0 = b0)∧. . .∧(vj−1 = bj−1))

– Clauses (x̄j ∨ (vi ↔ bi )) = (x̄j ∨ li ), i = 0, . . . , r − 1, where

I li ≡ vi , if bi = 1
I li ≡ v̄i , otherwise

– If xj = 1, assignment to vi variables must encode j − 1

I All other x variables must take value 0

– If all xj = 0, any assignment to vi variables is consistent

– O(n log n) clauses ; O(log n) auxiliary variables

• An example: x1 + x2 + x3 ≤ 1
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x2 1 01
x3 2 10
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General Cardinality Constraints

• General form:
∑n

j=1 xj ≤ k (or
∑n

j=1 xj ≥ k)

– Sequential counters [S05]

I Clauses/Variables: O(n k)

– BDDs [ES06]

I Clauses/Variables: O(n k)

– Sorting networks [ES06]

I Clauses/Variables: O(n log2 n)

– Cardinality Networks: [ANORC09,ANORC11a]

I Clauses/Variables: O(n log2 k)

– Pairwise Cardinality Networks: [CZI10]

– ...
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Pseudo-Boolean Constraints

• General form:
∑n

j=1 aj xj ≤ b

– Operational encoding [W98]

I Clauses/Variables: O(n)
I Does not guarantee arc-consistency

– BDDs [ES06]

I Worst-case exponential number of clauses

– Polynomial watchdog encoding [BBR09]

I Let ν(n) = log(n) log(amax)
I Clauses: O(n3ν(n)) ; Aux variables: O(n2ν(n))

– Improved polynomial watchdog encoding [ANORC11b]

I Clauses & aux variables: O(n3 log(amax))

– ...



Encoding PB Constraints with BDDs I

• Encode 3x1 + 3x2 + x3 ≤ 3

• Construct BDD

– E.g. analyze variables by decreasing coefficients

• Extract ITE-based circuit from BDD

x1

x2

0 x3

0 1

x2

x3

0 1

1

1 0

1 0

1 0

1 0

1 0



Encoding PB Constraints with BDDs I

• Encode 3x1 + 3x2 + x3 ≤ 3

• Construct BDD

– E.g. analyze variables by decreasing coefficients

• Extract ITE-based circuit from BDD

x1

x2

0 x3

0 1

x2

x3

0 1

1

1 0

1 0

1 0

1 0

1 0

ITE
0 1

s

ba

z

ITE
0 1

s

ba

z

ITE
1 0

s

ba

z

ITE
0 1

s

ba

z

ITE
0 1

s

ba

z

01 1 0

0 1

1

x1

x2

x3

x2

x3



Encoding PB Constraints with BDDs II

• Encode 3x1 + 3x2 + x3 ≤ 3

• Extract ITE-based circuit from BDD

• Simplify and create final circuit:

ITE
1 0

s

ba

z

NO
R

1

NA
ND

x1

x2 x3 x2x3



More on PB Constraints

• How about
∑n

j=1 aj xj = k ?

– Can use (
∑n

j=1 aj xj ≥ k) ∧ (
∑n

j=1 aj xj ≤ k), but...

I
∑n

j=1 aj xj = k is a subset-sum constraint

(special case of a knapsack constraint)
I Cannot find all consequences in polynomial time [S03,FS02,T03]

• Example:

4x1 + 3x2 + 2x3 = 5

– Replace by (4x1 + 3x2 + 2x3 ≥ 5) ∧ (4x1 + 3x2 + 2x3 ≤ 5)
– Let x2 = 0
– Either constraint can still be satisfied, but not both
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CSP Constraints

• Many possible encodings:

– Direct encoding [dK89,GJ96,W00]

– Log encoding [W00]

– Support encoding [K90,G02]

– Log-Support encoding [G07]

– Order encoding for finite linear CSPs [TTKB09]



Direct Encoding for CSP w/ Binary Constraints

• Variable xi with domain Di , with mi = |Di |

• Represent values of xi with Boolean variables xi ,1, . . . , xi ,mi

• Require
∑mi

k=1 xi ,k = 1

– Suffices to require
∑mi

k=1 xi,k ≥ 1 [W00]

• If the pair of assignments xi = vi ∧ xj = vj is not allowed, add
binary clause (x̄i ,vi ∨ x̄j ,vj )
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Embedding SAT Solvers

SAT Solver

BacktrackingPropagation

Branching

Constraint Propagators
/ Theory Solvers

Assignments +
Constraints

Assignments +
Explanations

• Modify SAT solver to interface
problem-specific propagators (or
theory solvers)

• Typical interface:

– SAT solvers communicates
assignments/constraints to
propagators

– Retrieve resulting assignments or
explanations for inconsistency

• Well-known examples (many more):

– Branch&bound PB optimization
– Non-clausal SAT solvers
– Lazy SMT solving (see later talks)

• Key problem:

– Keeping up with improvements in
SAT solvers



Pseudo-Boolean Constraints & Optimization

• Pseudo-Boolean Constraints:
– Boolean variables: x1, . . . , xn
– Linear inequalities:∑

j∈N

aij lj ≥ bi , lj ∈ {xj , x̄j}, xj ∈ {0, 1}, aij , bi ∈ N+
0

• Pseudo-Boolean Optimization (PBO):

minimize
∑
j∈N

cj · xj

subject to
∑
j∈N

aij lj ≥ bi ,

lj ∈ {xj , x̄j}, xj ∈ {0, 1}, aij , bi , cj ∈ N+
0

• Branch and bound (B&B) PBO algorithm: [MMS00]

– Extend SAT solver
– Must develop propagator for PB constraints
– B&B search for computing optimum cost function value

I Trivial upper bound: all xj = 1
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Limitations with Embeddings

• B&B MaxSAT solving:

– Cannot use unit propagation
– Cannot learn clauses

• MUS extraction:

– Decision of clauses to include in MUS based on unsatisfiable
outcomes

– No immediate gain from embedding SAT solvers
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Practical Aspects of Using SAT Oracles

• Incremental vs. non-incremental SAT [ES03]

– Incremental SAT:

I Replace each clause (Ci ) with (Ci ∨ āi ), where ai is assumption
variable

I When calling SAT solver, each assumption can be assigned 1, 0, or
be left unassigned

I ai = 1 to activate clause Ci

I ai = 0 to deactivate clause Ci

I Add clause (āi ) to delete Ci

I Note: incremental SAT enables clause reuse

– Non-incremental SAT:

I Submit complete formula to SAT solver in each iteration
I Note: difficult to instrument clause reuse

• What does the SAT oracle compute/return?

1. Yes/No: (st)← SAT(F)

2. Compute model: (st, µ)← SAT(F)
3. Compute unsatisfiable cores: (st, µ,U)← SAT(F)
4. Compute proof traces/resolution proof: (st, µ, T )← SAT(F)
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I ai = 0 to deactivate clause Ci

I Add clause (āi ) to delete Ci

I Note: incremental SAT enables clause reuse

– Non-incremental SAT:

I Submit complete formula to SAT solver in each iteration
I Note: difficult to instrument clause reuse

• What does the SAT oracle compute/return?

1. Yes/No: (st)← SAT(F)
2. Compute model: (st, µ)← SAT(F)
3. Compute unsatisfiable cores: (st, µ,U)← SAT(F)

4. Compute proof traces/resolution proof: (st, µ, T )← SAT(F)
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Defining MUSes

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and
irreducible subformula

• How to compute an MUS?
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Deletion-Based MUS Extraction

Input : Unsatisfiable CNF Formula F
Output: MUS M
begin
M← F // MUS over-approximation

foreach c ∈M do
if not SAT(M\ {c}) then
M←M\ {c} // If UNSAT(M\ {c}), then c 6∈ M

return M // Final M is MUS

end

• Number of calls to SAT solver: O(|F|)
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Input : Unsatisfiable CNF Formula F
Output: MUS M
begin
M← F // MUS over-approximation

foreach c ∈M do
if not SAT(M\ {c}) then
M←M\ {c} // Remove c from M

return M // Final M is MUS

end

• Number of calls to SAT solver: O(|F|)



An Example

(¬x1 ∨ x2)
(¬x3 ∨ x2)
(x1 ∨ x2)
(¬x3)
(¬x2)

UNSAT instance
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An Example

(¬x1 ∨ x2)
(x1 ∨ x2)
(¬x2)

Computed MUS



More on MUS Extraction

Algorithm # Oracle Calls Reference

Insertion (Default) O(m × k) [SP88]

Deletion (Default) O(m) [CD91,BDTW93]

QuickXplain O(k × (1 + log m
k )) [J01,J04]

Dichotomic O(k × logm) [HLSB06]

Insertion with Relaxation Variables O(m) [MSL11]

Deletion with Model Rotation O(m) [BLMS12,MSL11]

Progression O(k × log(1 + m
k )) [MSJB13]

• Additional Techniques:

– Restrict formula to unsatisfiable subsets [BDTW93,HLSB06,DHN06,MSL11]

– Check redundancy condition [vMW08,MSL11,BLMS12]

– Model rotation, recursive model rotation, etc. [MSL11,BMS11,BLMS12,W12]
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Defining Maximum Satisfiability

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

• Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

• A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

• The MaxSAT solution is one of the smallest MCSes
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MaxSAT Problem(s)

• MaxSAT:

– All clauses are soft
– Maximize number of satisfied soft clauses
– Minimize number of unsatisfied soft clauses

• Partial MaxSAT:

– Hard clauses must be satisfied
– Minimize number of unsatisfied soft clauses

• Weighted MaxSAT

– Weights associated with (soft) clauses
– Minimize sum of weights of unsatisfied clauses

• Weighted Partial MaxSAT

– Weights associated with soft clauses
– Hard clauses must be satisfied
– Minimize sum of weights of unsatisfied soft clauses
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Definitions

• Cost of assignment:

– Sum of weights of unsatisfied clauses

• Optimum solution (OPT):

– Assignment with minimum cost

• Upper Bound (UB):

– Assignment with cost not less than OPT
– E.g.

∑
ci∈ϕ wi + 1; hard clauses may be inconsistent

• Lower Bound (LB):

– No assignment with cost no larger than LB
– E.g. −1; it may be possible to satisfy all soft clauses
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– Sum of weights of unsatisfied clauses

• Optimum solution (OPT):

– Assignment with minimum cost

• Upper Bound (UB):

– Assignment with cost not less than OPT
– E.g.

∑
ci∈ϕ wi + 1; hard clauses may be inconsistent

• Lower Bound (LB):
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Iterative SAT Solving – Refine UB

LB

OPT

UB0

• Require
∑

wi ri ≤ UB0 − 1

• While SAT, refine UB

– New UB given by cost of unsatisfied clauses, i.e.
∑

wi ri

• Repeat until constraint
∑

wi ri ≤ UBk − 1 becomes UNSAT

– UBk denotes the optimum value

• Worst-case # of iterations exponential on instance size

• Example tools:

– Minisat+: CNF encoding of constraints [ES06]

– SAT4J: native handling of constraints [LBP10]

– QMaxSat: CNF encoding of constraints [KZFH12]

– ...
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Fu&Malik’s Core-Guided Approach

x6 ∨ x2 ¬x6 ∨ x2 ¬x2 ∨ x1 ¬x1

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4 ¬x4 ∨ x5

x7 ∨ x5 ¬x7 ∨ x5 ¬x5 ∨ x3 ¬x3

Example CNF formula
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Formula is UNSAT; OPT ≤ |ϕ| − 1; Get unsat core
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i=1 ri ≤ 1

Add relaxation variables and AtMost1 constraint
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Add new relaxation variables and AtMost1 constraint
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Fu&Malik’s Core-Guided Approach

x6 ∨ x2∨r7 ¬x6 ∨ x2∨r8 ¬x2 ∨ x1∨r1∨r9 ¬x1∨r2∨r10

¬x6 ∨ x8 x6 ∨ ¬x8 x2 ∨ x4∨r3 ¬x4 ∨ x5∨r4

x7 ∨ x5∨r11 ¬x7 ∨ x5∨r12 ¬x5 ∨ x3∨r5∨r13 ¬x3∨r6∨r14∑6
i=1 ri ≤ 1

∑14
i=7 ri ≤ 1

MaxSAT solution is |ϕ| − I = 12− 2 = 10



Organization of Fu&Malik’s Algorithm

• Clauses characterized as:

– Soft: initial set of soft clauses
– Hard: initially hard, or added during execution of algorithm

I E.g. clauses from AtMost1 constraints

• While exist unsatisfiable cores [FM06]

– Add fresh set B of relaxation variables to soft clauses in core
– Add new AtMost1 constraint∑

bi∈B

bi ≤ 1

I At most 1 relaxation variable from set B can take value 1

• (Partial) MaxSAT solution is |ϕ| − I
– I: number of iterations (≡ number of computed unsat cores)

• Can be adapted for weighted MaxSAT [ABL09a,MMSP09]
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Oracle-Based MaxSAT Solving I

• Iterative: [MHLPMS13]

– Linear search SAT/UNSAT (refine UB) [e.g. LBP10]

– Linear search UNSAT/SAT (refine LB)
– Binary search [e.g. FM06]

– Bit-based
– Mixed linear/binary search [e.g. KZFH12]

• Core-Guided: [MHLPMS13,ABL13]

– FM/(W)MSU1.X/WPM1 [FM06,MSM08,MMSP09,ABL09a,ABGL12]

– (W)MSU3 [MSP07]

– (W)MSU4 [MSP08]

– (W)PM2 [ABL09a,ABL09b,ABL10,ABGL13]

– Core-guided binary search (w/ disjoint cores) [HMMS11,MHMS12]

I Bin-Core, Bin-Core-Dis, Bin-Core-Dis2

• Iterative subsetting [DB11,DB13a,DB13b]



Oracle MaxSAT Solving II

• A sample of recent algorithms:

Algorithm # Oracle Calls Reference

Linear search SU Exponential [e.g. LP10]

Binary search Linear [e.g. FM06]

WMSU1/WPM1 Exponential* [FM06,MSM08,MMSP09,ABL09a,ABGL12]

WPM2 Exponential* [ABL10,ABGL13]

Bin-Core-Dis Linear [HMMS11,MHMS12]

Iterative subsetting Exponential [DB11,DB13a,DB13b]

* Weighted case; depends on computed cores

• Example MaxSAT solvers:

– MSUnCore; WPM1, WPM2; QMaxSAT; SAT4J; etc.
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Problem Statement

[GMN09]

Given: ∃X∀Y . φ, where φ is a propositional formula

Question: Is there an assignment τ to X such that ∀Y . φ[X/τ ]?

Example

∃x1, x2 ∀y1, y2. (x1 → y1) ∧ (x2 → y2)

solution: x1 = 0, x2 = 0
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Motivation

• ΣP
2 complete

• interesting problems in this class, e.g. certain nonmonotonic
reasoning, aspects of model checking, conformant planning

• separate track at QBF Eval
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Expanding ∃X∀Y . φ into SAT

∃X∀Y . φ −→ SAT

 ∧
µ∈B|Y |

φ[Y /µ]



Example

∃x1, x2∀y1, y2. (x1 ↔ y1) ∧ (x2 ↔ y2) ∧ (x̄1 ∨ x̄2)

Expansion:
(x1 ↔ 0) ∧ (x2 ↔ 0) ∧ (x̄1 ∨ x̄2)

∧ (x1 ↔ 0) ∧ (x2 ↔ 1) ∧ (x̄1 ∨ x̄2)
∧ (x1 ↔ 1) ∧ (x2 ↔ 0) ∧ (x̄1 ∨ x̄2)
∧
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∧ (x1 ↔ 1) ∧ (x2 ↔ 0) ∧ (x̄1 ∨ x̄2)
∧ (x1 ↔ 1) ∧ (x2 ↔ 1) ∧ (x̄1 ∨ x̄2)



Expanding ∃X∀Y . φ into SAT

∃X∀Y . φ −→ SAT
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µ∈B|Y |
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Abstraction of ∃X∀Y . φ

• Consider only some set of assignments ω ⊆ B|Y |∧
µ∈ω

φ[Y /µ]

• If a solution to the problem is a solution to the abstraction∧
µ∈B|Y |

φ[Y /µ] ⇒
∧
µ∈ω

φ[Y /µ]

• But not the other way around, a solution to an abstraction is not
necessarily a solution to the original problem.
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CEGAR Loop

input : ∃X∀Y . φ
output: (true, τ) if there exists τ s.t. ∀Y . φ[X/τ ],

(false, –) otherwise

ω ← ∅;
while true do

(outc1, τ)← SAT(
∧
µ∈ω φ[Y /µ]); // find a candidate

if outc1 = false then
return (false,–); // no candidate found

end

if “ τ is a solution ”; // solution check

then
return (true, τ)

else
“ Grow ω ”; // refinement

end

end
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Testing for Solution

A value τ is a solution to ∃X∀Y . φ iff

∀Y . φ[X/τ ] iff UNSAT(¬φ[X/τ ])

If SAT(¬φ[X/τ ]) by some µ, then µ is a counterexample to τ

Example

∃x1, x2 ∀y1, y2. (x1 → y1) ∧ (x2 → y2)

• candidate: x1 = 1, x2 = 1

• counterexamples: y1 = 0, y2 = 0
y1 = 0, y2 = 1
y1 = 1, y2 = 0
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Refinement

Y

X

τ

µ

1 1 1

τ1 1 1 1 0

τ2 1 1 1 0

0. . . . . .

ω
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µ

1 1 1
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τ2 1 1 1 0

0. . . . . .

ω

ω′



Refinement

Y

X

ττ

µ

1 1 1

τ1τ1 1 1 1 00

τ2τ2 1 1 1 00

0. . . . . .

ω

ω′



AReQS (Abstraction Refinement-based QBF Solver)

input : ∃X∀Y . φ
output: (true, τ) if there exists τ s.t. ∀Y . φ[X/τ ],

(false, –) otherwise

ω ← ∅; // start with the empty expansion

while true do

(outc1, τ)← SAT(
∧
µ∈ω φ[Y /µ]); // find a candidate

if outc1 = false then
return (false,–); // no candidate found

end

(outc2, µ)← SAT (¬φ[X/τ ]); // find a counterexample

if outc2 = false then
return (true, τ) ; // candidate is a solution

end
ω ← ω ∪ {µ} ; // refine

end



AReQS — Conclusions

• ... is a CEGAR-based algorithm for 2QBF [JMS11]

• ... uses SAT solver as an oracle

• ... gradually expands given 2QBF into a SAT formula

• Can be extended to arbitrary number of levels by recursion
(RAReQS) [JKMSC12]
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CNF Encodings

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?



SAT-Based Problem Solving – A Glimpse of the Future

• Remarkable (and increasing) number of applications of SAT

• Can use SAT for solving problems in different complexity classes

– FPNP[log n], FPNP, ...
– E.g. tackling problems in the polynomial hierarchy

• Many new recent algorithms for concrete problems

– MaxSAT
– MUSes
– MCSes
– Enumeration problems
– ...

• Better encodings?

• White-box vs. black-box approaches?

– But use of oracles inevitable in many cases



Thank You
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