CDCL SAT Solvers & SAT-Based Problem Solving

Joao Marques-Silva'? & Mikolas Janota?

LUniversity College Dublin, Ireland
2|ST/INESC-ID, Lisbon, Portugal

SAT/SMT Summer School 2013
Aalto University, Espoo, Finland

The Success of SAT

e Well-known NP-complete decision problem [c71]

The Success of SAT

e Well-known NP-complete decision problem [c71]
e In practice, SAT is a success story of Computer Science
— Hundreds (even more?) of practical applications

The Success of SAT

e Well-known NP-complete decision problem [c71]
e In practice, SAT is a success story of Computer Science
— Hundreds (even more?) of practical applications

witconrne N0ISE AaIYSiS™ Tochmology Mappi 6
Network Security Management Fault Lucgli]iazt;ﬁ:)eﬁmg Pedigree EﬂﬂSiStEley ngunllgl:yljiu:q]p;::]fmpaog}teign

Maximum Satisfiability Configuration epination Analysis
Softwa e Testmgﬁlter Design SWitching Network Verification

Equivalence Checking RESoUrce Constrained Scheduling

SatiSﬁahiLE}]’ﬂM?gﬂ!E“ EmziesPackaggmm,gynagement Syml?ﬁmé?é;{ecttir_y baluatio
: ' ' outin
Software Mlgglﬁlllgﬂhecklngﬁ‘.’l‘ﬁiﬁlﬂﬁ{lm’ ?%Eﬂﬂ‘s"l;haﬁipﬁonl clTlimetail(llli_n:Z -
. Model Findin
Test Pattern Generation Plannilgg arlugilcasgﬁthesli]s el]esign I]Eh(lsggilnlgg

P"werEStimatiu"Eirﬂ_ﬂitDﬂﬂy Cumputation Genome Rearrangement -
Test Suite Minimization lazy Clause Generation
Pseudo-Boolean Formulas

SAT Solver Improvement

[Source: Le Berre&Biere 2011]

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

1200

T T T o &
+ Limmat (2002) 0P
< Zehdlf(2002) | , 89¢
* Berkmin (2002) . ®
O Forklift (2003) £ MS} o
m Siege (2003) + *®© 0 @
1000 - Zchaff (2004) + » & ® E
SatELite (2005) >
Minisat 2 (2006) * . &
s Picosat (2007) s 08 ®
v Rsat (200 X >
v Minisat 2.1 (2008) X x B oa &
800 [Precosat (2009) 5 6’% E
. + Glucose (2009) * o @
) o Clasp(2009) * x ® o
< e Cryptominisat (2010) m o0
3 o Lingeling (2010), *
< e Minisat 2.2 (2010) Fa
= 600 F © Glucose?2 (2011) x ¥ 0 1
g & Glueminisat (2011)) g
S © Contrasat (2011) x &
2 @ Lingeling587f (2011) <
O X
1 1

160 180 200

Number of problems solved

This Lecture

e Overview modern SAT solvers
— Conflict-Driven Clause Learning (CDCL) SAT solvers
» Note: Overview for non-experts

This Lecture

e Overview modern SAT solvers
— Conflict-Driven Clause Learning (CDCL) SAT solvers
» Note: Overview for non-experts

e SAT-based problem solving in practice
— How to do it?

This Lecture

e Overview modern SAT solvers
— Conflict-Driven Clause Learning (CDCL) SAT solvers
» Note: Overview for non-experts

e SAT-based problem solving in practice
— How to do it?
» Encode problems to SAT
» Embed SAT solvers in applications
» lteratively use a SAT solver (i.e. as an NP oracle)

Part |

CDCL SAT Solvers

Outline

Basic Definitions
DPLL Solvers
CDCL Solvers

What Next in CDCL Solvers?

Outline

Basic Definitions

Preliminaries

e Variables: w,x,y,z,a,b,c,...

e Literals: w,X,y,a,..., but also —w,—y, ...

e Clauses: disjunction of literals or set of literals

e Formula: conjunction of clauses or set of clauses

e Model (satisfying assignment): partial /total mapping from
variables to {0,1}

e Formula can be SAT/UNSAT

Preliminaries

e Variables: w,x,y,z,a,b,c,...

e Literals: w,X,y,a,..., but also —w,—y, ...

e Clauses: disjunction of literals or set of literals

e Formula: conjunction of clauses or set of clauses

e Model (satisfying assignment): partial /total mapping from
variables to {0,1}

e Formula can be SAT/UNSAT

e Example:
FLEMAFVsS)A(WVa)A(XVB)A(FVZVC)A(bVEV)

— Example models:
» {r,s,a b, c,d}
» {r,s,x,y,w,z,a,b,c,d}

Resolution

e Resolution rule: [DP60,R65]

(aV x) (BVX)
(Vv B)

— Complete proof system for propositional logic

Resolution

e Resolution rule:

(Vv x) (Bvx)
(v B)
— Complete proof system for propositional logic

XVa (xVa) (yVva (yVva

/ N
\/

— Extensively used with (CDCL) SAT solvers

[DP60,R65]

Resolution

e Resolution rule:

(Vv x) (Bvx)
(v B)
— Complete proof system for propositional logic

XVa (xVa) (yVva (yVva

— Extensively used with (CDCL) SAT solvers

e Self-subsuming resolution (with o/ C «):

(aVx) (o VX)

(@)

— () subsumes (a V x)

[DP60,R65]

[e.g. SP04,EBO5]

Unit Propagation

Unit Propagation

F = (NDA(FVS)A
(wVva)A(xVaVvb)
(7VZVc)A(bVEV)

e Decisions / Variable Branchings:
w=1lx=1y=1z=1

Unit Propagation

Level Dec. Unit Prop.

0 0 r——s
F = (r)A(FVs)A .
(wva)A(xVaVvb |
(FVZVc)A(bV

)
cV d) 2 x ——> b
3 y
e Decisions / Variable Branchings: \ \

w=1lx=1y=1z=1 4 z——>c—>d

Unit Propagation

Level Dec. Unit Prop.

0 0 r——s
F = (r)A(FVs)A)
(wVva)A(xVaVvb) |
(FVZVc)A(bVEV) 2 x—b
3 y
e Decisions / Variable Branchings: \ \
w=1lx=1y=1z=1 4 z——>c—>d

e Additional definitions:
— Antecedent (or reason) of an implied assignment
» (bVvEvd)ford
— Associate assignment with decision levels
» w=101, x=102, y=103,z=104
» r=100,d=104, ..

Resolution Proofs

e Refutation of unsatisfiable formula by iterated resolution
operations produces resolution proof

e An example:
F=@ANMb)A(EV)A(aVb)A(aVvd)A(aVd)

e Resolution proof:

(aV b) (aVe)
N/
(¢) (bVe)
) N/
(b) (b)
N
1

e A modern SAT solver can generate resolution proofs using clauses
learned by the solver [ZM03]

Unsatisfiable Cores & Proof Traces

e CNF formula:

F = (©)AB)A(aVc)A(aVvb)A(aVd)A(aVd)

Level Dec. Unit Prop.

0 0 h—> 2
c— |

Implication graph with conflict

Unsatisfiable Cores & Proof Traces

e CNF formula:

Level Dec. Unit Prop.

0 0 b—s a

l

c— L

Proof trace L: (3V ¢) (aV b) (&) (b)

Unsatisfiable Cores & Proof Traces

e CNF formula:

Level Dec. Unit Prop. (aVv b) (aVe)
: N/
SRS = @ (bvo)
| N/
Y NG
1

Resolution proof follows structure of conflicts

Unsatisfiable Cores & Proof Traces

e CNF formula:

Level Dec. Unit Prop. (aVv b) (3Vec)
. N/
U= @ (bvo)
| N/
Y B W
1

Unsatisfiable subformula (core): (&), (b),(3V c),(aV b)

Outline

DPLL Solvers

The DPLL Algorithm

—

Unassigned N

variables ?
lv
Satisfiable
Assign value
to variable
Unit

propagation

!

Conflict ?

lv
N Can undo
decision ?

lv
Backtrack &
flip variable

Unsatisfiable

e Optional: pure literal rule

The DPLL Algorithm

—

Unassigned N

variables ?
lv
Satisfiable
Assign value

to variable

1.7

Unit
propagation

!

Conflict ?

lv

N Can undo

decision ?
lv
Unsatisfiable

Backtrack &
flip variable

F = (xVy)A(aVb)A(aVb)A(aVb)A(3Vb)

e Optional: pure literal rule

The DPLL Algorithm

Unassigned N

to variable

}7 1
2

Unit
propagation

l 3

Conflict ?

lv
N Can undo
decision ?

lv

Unsatisfiable

Backtrack &
flip variable

e Optional: pure literal rule

variables ?
1v Level
Satisfiable
Assign value 0

0

— F = (xVy)A(aVb)A(3Vb)A(aVB)A(5V D)

Dec. Unit Prop.

N

The DPLL Algorithm

—

F = (xVy)A(aVb)A(3Vb)A(aVb)A(3V D)
Unassigned N

variables ?
1v Level Dec. Unit Prop.
Satisfiable
Assign value - 0 Q)

to variable
1 X
2
Unit Y

propagation

!

Conflict ?

lv

N Can undo

decision ?
lv
Unsatisfiable

Backtrack &
flip variable

e Optional: pure literal rule

The DPLL Algorithm

4.1 _ _

F = (xVy)A(aVb)A(aVb)A(aVb)A(3Vb)
Unassigned N

variables ?
1v Level Dec. Unit Prop.
Satisfiable
Assign value - 0 Q)

to variable
1 X
2 —
Unit Y

propagation

!

Conflict ?

lv
N Can undo
decision ?

lv

Unsatisfiable

Backtrack &
flip variable

e Optional: pure literal rule

The DPLL Algorithm

4.1 _ _

F = (xVy)A(aVb)A(aVb)A(aVb)A(3Vb)
Unassigned N

variables ?
1v Level Dec. Unit Prop.
Satisfiable
Assign value - 0 Q)

to variable
1 X
2 —
Unit Y

propagation

!

Conflict ?

lv
N Can undo
decision ?

lv

Unsatisfiable

Backtrack &
flip variable

e Optional: pure literal rule

The DPLL Algorithm
4.1 _ _

F = (xVy)A(avVb)A(aVb)A(aVb)A(aVb)

Unassigned N

variables ?
1v Level Dec. Unit Prop.
Satisfiable
Assign value - 0 Q)
to variable

Unit
propagation

!

Conflict ?

lv

N Can undo

decision ?
lv
Unsatisfiable
Backtrack &

flip variable

e Optional: pure literal rule

The DPLL Algorithm
4.1 _ _

F = (xVy)A(avVb)A(aVb)A(aVb)A(aVb)

Unassigned N

variables ?
1v Level Dec. Unit Prop.
Satisfiable
Assign value - 0 Q)
to variable

Unit
propagation

!

Conflict ?

lv

N Can undo

decision ?
lv
Unsatisfiable
Backtrack &

flip variable

e Optional: pure literal rule

Outline

CDCL Solvers

What is a CDCL SAT Solver?

e Extend DPLL SAT solver with: [DP60,DLL62)
— Clause learning & non-chronological backtracking [MSS96,8597,297]

» Exploit UIPs [MSS96,55512]

» Minimize learned clauses [SB09,VG09]

» Opportunistically delete clauses [MSS96,MSS99, GNO2]

— Search restarts [GSK98,BMS00,H07,B0g]

Lazy data structures

» Watched literals [MMZZMo1]

Conflict-guided branching

» Lightweight branching heuristics [MMZZMo1]
» Phase saving [PDO7]

How Significant are CDCL SAT Solvers?

CPU Time (in seconds)

GRASP

DPLL

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

1200

1000

800

600

400

*

200

. 4

-

6000060 e

T T T T
Limmat (2002) o
Zchaff (2002) o
Berkmin (2002)
Forklift (2003)
Siege (2003) +
Zchaff 2004) -+ ®
SatELite (2005) &
Minisat 2 (2006)

S,

T &

Picosat (2007)
Rsat (2007)

inisat 2.1 (2008) * °
Precosat (2009) & oD
Glucose (2009)
Clasp (2009) *
Cryptominisat (2010)
Lingeling (2010).
Minisat 2.2 (2010)

sat (2011)
Contrasat (2011)
Lingeling S877 (2011) >

160 180

f) Number of problems solved

200

Outline

CDCL Solvers
Clause Learning, UIPs & Minimization

Clause Learning

Level Dec. Unit Prop.
0 0

1 X
2 y
3 z a

Clause Learning

Level Dec. Unit Prop.
0 0

1 X
2 y
3 z\a/

b

e Analyze conflict

Clause Learning

Level Dec. Unit Prop.

0 0
1 X
2 y
3 z\:a/L

e Analyze conflict
— Reasons: x and z

» Decision variable & literals assigned at lower decision levels

Clause Learning

Level Dec. Unit Prop.

0 0
1 X
2 y
3 z\:a/L

e Analyze conflict
— Reasons: x and z
» Decision variable & literals assigned at lower decision levels

— Create new clause: (xV z)

Clause Learning

Level Dec. Unit Prop.

0 0 _
(aVb) (zvb) (xVvzVa)
1 X
2 y
3 z\:a/L

e Analyze conflict
— Reasons: x and z
» Decision variable & literals assigned at lower decision levels

— Create new clause: (xV z)

e Can relate clause learning with resolution

Clause Learning

Level Dec. Unit Prop.

0 0
(3Vv b) (zvb) (xVvzVa)
- Ve
%) y a\/z
3 z\:a > |
b/

e Analyze conflict
— Reasons: x and z
» Decision variable & literals assigned at lower decision levels

— Create new clause: (xV z)

e Can relate clause learning with resolution

Clause Learning

Level Dec. Unit Prop.

<1J i (avbh) (zvb) (xvzVva)
pd
) , (avz)
3 > > a > | (;lz)
\b/

e Analyze conflict
— Reasons: x and z
» Decision variable & literals assigned at lower decision levels

— Create new clause: (xV z)

e Can relate clause learning with resolution

Clause Learning

Level Dec. Unit Prop.
0 0

1 X |_/_

e Analyze conflict
— Reasons: x and z
» Decision variable & literals assigned at lower decision levels
— Create new clause: (xV z)
e Can relate clause learning with resolution
— Learned clauses result from (selected) resolution operations

Clause Learning — After Bracktracking

Level Dec. Unit Prop.

0 0
1 X
2 y
3 z a 1

Clause Learning — After Bracktracking

Level Dec. Unit Prop.

0 0
1 X
2 y
3 z

e Clause (X V Z) is asserting at decision level 1

Clause Learning — After Bracktracking

Level Dec. Unit Prop. Level Dec. Unit Prop.
0 0 0 0
1 X 1 X —> Z
2 y
3 z

e Clause (X V Z) is asserting at decision level 1

Clause Learning — After Bracktracking

Level Dec. Unit Prop. Level Dec. Unit Prop.
0 0 0 0
1 X 1 X —> 7
2 y
3 z

e Clause (X V Z) is asserting at decision level 1

e Learned clauses are always asserting
e Backtracking differs from plain DPLL:

— Always bactrack after a conflict

[MSS96,MSS99]

[MMZZMo1]

Unique Implication Points (UIPs)

Level Dec. Unit Prop.

0 0
1 w
2 X

N~

Unique Implication Points (UIPs)

Level Dec. Unit Prop. (bVv) (wve) (xvavb) (yvzva)
0 0 /
1 w (wV b)
2 (W VRV 3)
g
(wvxVyVzZ)
4

b —— |

e Learn clause (W VXV yVZ)

Unique Implication Points (UIPs)

Level Dec. Unit Prop. (bVv) (wve) (xvavb) (yvzva)
0 0 /
1 w (wV b)
2 (W VRV 3)
g
(wvxVyVzZ)
4

b —— |

e Learn clause (W VXV yVZ)
e But ais an UIP

Unique Implication Points (UIPs)

Level Dec. Unit Prop. (bVv) (wve) (xvavb) (yvzva)

o o -

e But ais an UIP

e Learn clause (w V XV 3)

Multiple UIPs

Level Dec. Unit Prop.

0 0
1 w
2 X
3 y
4

Multiple UIPs

Level Dec. Unit Prop. e First UIP:
0 0 — Learn clause (w V y V 3)
1 w
2 X
3 y

i
N
o €0
- €= o

|]

Multiple UIPs

Level Dec. Unit Prop. o Bl e
0 0 — Learn clause (w V y V 3)
! v e But there can be more than 1
UIP
2 X
3 y
4

Multiple UIPs

Level Dec. Unit Prop. o Bl e
0 0 — Learn clause (w V y V 3)
! v e But there can be more than 1
UIP
2 x e Second UIP:

— Learn clause (x VZ V a)

Multiple UIPs

Level Dec. Unit Prop. e First UIP:
0 0 — Learn clause (w V y V 3)
! v e But there can be more than 1
UIP
2 x e Second UIP:
3 , — Learn clause (x VZ V a)
e In practice smaller clauses more
: i . . . effective

————
\ l l — Compare with (w VXV yVZ)

Multiple UIPs

Level Dec. Unit Prop. e First UIP:
0 0 — Learn clause (w V y V 3)
! v e But there can be more than 1
ulP
2 x e Second UIP:
3 — Learn clause (x VZ V a)
y .
e In practice smaller clauses more
: effective
27 ey [a———>¢C
\ l l — Compare with (w VXV yV2Z)
s b——m> L
e Multiple UIPs proposed in GRASP [MSS96]
— First UIP learning proposed in Chaff [MMZZMo1]

e Not used in recent state of the art CDCL SAT solvers

Multiple UIPs

Level Dec. Unit Prop. e First UIP:
0 0 — Learn clause (w V y V 3)
! v e But there can be more than 1
ulP
2 x e Second UIP:
3 — Learn clause (x VZ V a)
y .
e In practice smaller clauses more
: effective
27 ey [a———>¢C
\ l l — Compare with (w VXV yV2Z)
s b——m> L
e Multiple UIPs proposed in GRASP [MSS96]
— First UIP learning proposed in Chaff [MMZZMo1]

e Not used in recent state of the art CDCL SAT solvers

e Recent results show it can be beneficial on current instances [sssi2]

Clause Minimization |

Level Dec. Unit Prop.
0 0

Clause Minimization |

Level Dec. Unit Prop.
0 0
1 x——> b
2 y ()?
3 z C m— |

e Learn clause (X V7V ZVb)

Clause Minimization |

Level Dec. Unit Prop. (3ve) (2vbvVve) (xvyVvzva) (RVb)
0 0 l/

1 x ——> b (2vbva)

2 4 (xVyVZzVDh)

e Learn clause (X V7V ZVb)

e Apply self-subsuming resolution (i.e. local minimization) [SB09]

Clause Minimization |

Level Dec. Unit Prop. (ave)
0 0
1 B——>»

e Apply self-subsuming resolution (i.e. local minimization)

Clause Minimization |

Level Dec. Unit Prop. (3ve) (2vbve) (xvyVvzva) (RVb)
0 0
1 B——>»

e Apply self-subsuming resolution (i.e. local minimization)

e Learn clause (X Vy V 2)

Clause Minimization Il

Level Dec. Unit Prop.
0 0

1

e
| X\§<

Clause Minimization Il

Level Dec. Unit Prop.
0 0
1

—
| \,2<

e Learn clause (w V X V C)

Clause Minimization Il

Level Dec. Unit Prop.
0 0
1

s
| X\Zi

e Learn clause (w V X V €)
e Cannot apply self-subsuming
resolution

— Resolving with reason of c yields
(wVXV3avVbh)

Clause Minimization Il

Level Dec. Unit Prop.
0 0
1

s
| X\Zi

e Learn clause (w V X V €)

e Cannot apply self-subsuming
resolution
— Resolving with reason of c yields
(WwVxVavb)

e Can apply recursive minimization

Clause Minimization Il

Level Dec. Unit Prop.
ol | E_ - _;
0 0

e Cannot apply self-subsuming
! resolution

w a @©
\ / — Resolving with reason of ¢ yields
b (WVXVaVbh)
5 e Can apply recursive minimization
X &
\\-' d——— 1

e Marked nodes: literals in learned clause [SB09]

Clause Minimization Il

Level Dec. Unit Prop.
ol | E_ - _}
0 0

e Cannot apply self-subsuming
w —> a —> c

resolution
— Resolving with reason of c yields
(wVvxVvavb)
e Can apply recursive minimization

e Marked nodes: literals in learned clause

e Trace back from ¢ until marked nodes or new nodes
— Learn clause if only marked nodes visited

[SB0Y]

Clause Minimization Il

Level Dec. Unit Prop.
ol | AV
0 0 .
Cannot apply self-subsuming
! resolution

w > a > C
\ / — Resolving with reason of c yields
b (WVXVaVbh)
5 Can apply recursive minimization
X &
\\-' d——— 1

Learn clause (w V X)

e Marked nodes: literals in learned clause [SB09]
e Trace back from ¢ until marked nodes or new nodes
— Learn clause if only marked nodes visited

Outline

CDCL Solvers

Search Restarts & Lazy Data Structures

Search Restarts |

e Heavy-tail behavior: [GSK98]

%below

0.7 1

0.6

0.5 1

0.4

0.3 :] ;]]
0 2000 4000 6000 8000 10000 12000 oackiracks

— 10000 runs, branching randomization on industrial instance

e Use rapid randomized restarts (search restarts)

Search Restarts Il

e Restart search after a number
of conflicts

cutoff cutoff Hnion

Search Restarts ||

e Restart search after a number
of conflicts

e Increase cutoff after each
restart

— Guarantees completeness
— Different policies exist (see
refs)

cutoff

cutoff

Search Restarts ||

e Restart search after a number
of conflicts

e Increase cutoff after each
restart

— Guarantees completeness
— Different policies exist (see
refs)

| |
e Works for SAT & UNSAT cutoff
instances. Why?

cutoff

Search Restarts ||

e Restart search after a number
of conflicts

e Increase cutoff after each
restart

— Guarantees completeness
— Different policies exist (see
refs)

e Works for SAT & UNSAT
instances. Why?

e Learned clauses effective after
restart(s)

cutoff

Data Structures Basics

e Each literal / should access clauses containing /
— Why?

Data Structures Basics

e Each literal / should access clauses containing /
— Why? Unit propagation

Data Structures Basics

e Each literal / should access clauses containing /
— Why? Unit propagation

e Clause with k literals results in k references, from literals to the
clause

Data Structures Basics

e Each literal / should access clauses containing /
— Why? Unit propagation

e Clause with k literals results in k references, from literals to the
clause

e Number of clause references equals number of literals, L

Data Structures Basics

e Each literal / should access clauses containing /
— Why? Unit propagation

e Clause with k literals results in k references, from literals to the
clause
e Number of clause references equals number of literals, L
— Clause learning can generate large clauses
» Worst-case size: O(n)

Data Structures Basics

e Each literal / should access clauses containing /
— Why? Unit propagation

e Clause with k literals results in k references, from literals to the
clause
e Number of clause references equals number of literals, L
— Clause learning can generate large clauses
» Worst-case size: O(n)

— Worst-case number of literals: O(m n)

Data Structures Basics

e Each literal / should access clauses containing /
— Why? Unit propagation

e Clause with k literals results in k references, from literals to the
clause
e Number of clause references equals number of literals, L
— Clause learning can generate large clauses
» Worst-case size: O(n)

— Worst-case number of literals: O(m n)
— In practice,

Unit propagation slow-down worse than linear as clauses are learned !

Data Structures Basics

Each literal / should access clauses containing /
— Why? Unit propagation

Clause with k literals results in k references, from literals to the
clause

Number of clause references equals number of literals, L
— Clause learning can generate large clauses
» Worst-case size: O(n)
— Worst-case number of literals: O(m n)
— In practice,

Unit propagation slow-down worse than linear as clauses are learned !

Clause learning to be effective requires a more efficient
representation:

Data Structures Basics

Each literal / should access clauses containing /
— Why? Unit propagation

Clause with k literals results in k references, from literals to the
clause

Number of clause references equals number of literals, L
— Clause learning can generate large clauses
» Worst-case size: O(n)
— Worst-case number of literals: O(m n)
— In practice,

Unit propagation slow-down worse than linear as clauses are learned !

Clause learning to be effective requires a more efficient
representation: Watched Literals

Data Structures Basics

Each literal / should access clauses containing /
— Why? Unit propagation

Clause with k literals results in k references, from literals to the
clause

Number of clause references equals number of literals, L
— Clause learning can generate large clauses
» Worst-case size: O(n)
— Worst-case number of literals: O(m n)
— In practice,

Unit propagation slow-down worse than linear as clauses are learned !

Clause learning to be effective requires a more efficient
representation: Watched Literals
— Watched literals are one example of lazy data structures

» But there are others

Watched Literals

e Important states of a clause

[MMZZMo1]

literalsO = 4
literals1=0
size=5

EONEN

unit

literalsO = 4
literals1= 1
size=5

DX A

satisfied

literalsO = 5
literals1=0
size=5

ROXEO20N

unsatisfied

Watched Literals

[MMZZMo1]
e Important states of a clause ’ : N : ‘ N
unresolved
e Associate 2 references with @3 @1
each clause L
W ‘ N unresolved
@5 @3 @1
,,,,,,,,,,,,,,,,,,,,,,,, R e
@5 @3 @7 @1
Vo

satisfied

@5 @3 @ @7 @l

|
’ N ‘ N after backtracking to level 4

@3 @1

Watched Literals

[MMZZMo1]
e Important states of a clause ’ ¢ N ¢ ‘ N
unresolved
e Associate 2 references with @3 @
each clause L
e Deciding unit requires M ‘ N unresolved
traversing all literals @5 @3 @1
—— i e
@5 @3 @7 @1
(I

satisfied

@5 @3 @ @7 @l

’ N ‘ N after backtracking to level 4

@3 @1

Watched Literals

[MMZZMo1]
e Important states of a clause ’ ¢ N ¢ ‘ N
unresolved
e Associate 2 references with @3 @l
each clause L
e Deciding unit requires W ‘ N unresolved
traversing all literals @5 @3 @1
o References unchanged when | I
backtracking W w unit
@5 @3 @7 @1
(I

satisfied

@5 @3 @ @7 @l

’ N ‘ N after backtracking to level 4

@3 @1

Additional Key Techniques

o Lightweight branching [e.z. MMZZMO1]
— Use conflict to bias variables to branch on, associate score with
each variable
— Prefer recent bias by regularly decreasing variable scores

Additional Key Techniques

o Lightweight branching [e.z. MMZZMO1]

— Use conflict to bias variables to branch on, associate score with
each variable
— Prefer recent bias by regularly decreasing variable scores

e Clause deletion policies

— Not practical to keep all learned clauses
— Delete less used clauses [e.g. MSS96,GN02,ES03]

Additional Key Techniques

o Lightweight branching [e.z. MMZZMO1]

— Use conflict to bias variables to branch on, associate score with
each variable
— Prefer recent bias by regularly decreasing variable scores

e Clause deletion policies

— Not practical to keep all learned clauses
— Delete less used clauses [e.g. MSS96,GN02,ES03]

e Proven recent techniques:

— Phase saving [PDO7]
— Literal blocks distance [AS09]

Outline

What Next in CDCL Solvers?

CDCL — A Glimpse of the Future

e Clause learning techniques [e.&. ABHJS08,AS00]

— Clause learning is the key technique in CDCL SAT solvers
— Many recent papers propose improvements to the basic clause
learning approach

e Preprocessing & inprocessing

— Many recent papers [JHB12,HIB11]
— Essential in some applications

e Application-driven improvements
— Incremental SAT

» Handling of assumptions due to MUS extractors [LB13]

Part |l

SAT-Based Problem Solving

How to Solve Problems with SAT?

e CNF encodings

— Represent problem as instance of SAT
— E.g. Eager SMT, Pseudo-Boolean constraints, etc.

How to Solve Problems with SAT?

e CNF encodings
— Represent problem as instance of SAT
— E.g. Eager SMT, Pseudo-Boolean constraints, etc.
e Embedding of SAT solvers
— SAT solver used to implement domain specific algorithm
— White-box integration
— E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

How to Solve Problems with SAT?

e CNF encodings

— Represent problem as instance of SAT

— E.g. Eager SMT, Pseudo-Boolean constraints, etc.
e Embedding of SAT solvers

— SAT solver used to implement domain specific algorithm

— White-box integration

— E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.
e SAT solvers as oracles

— Algorithm invokes SAT solver as an NP oracle
— Black-box integration
— E.g. MaxSAT, MUSes, (2)QBF, etc.

How to Solve Problems with SAT?

CNF encodings

— Represent problem as instance of SAT

— E.g. Eager SMT, Pseudo-Boolean constraints, etc.
Embedding of SAT solvers

— SAT solver used to implement domain specific algorithm

— White-box integration

— E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

SAT solvers as oracles

— Algorithm invokes SAT solver as an NP oracle
— Black-box integration
— E.g. MaxSAT, MUSes, (2)QBF, etc.

e Note:

— CNF encodings most often used with either black-box or white-box
approaches

— SAT techniques adapted in many other domains: QBF, ASP, ILP,
CSP, ...

SAT-Based Problem Solving

Pseudo-

Boolean Branch&-

Bound

Planning

Problem Solving

) with SAT .
Encodings Embeddings OPT SAT

MaxSAT

Oracles

Backbones

e Some apps associated with more than one concept: planning,
BMC, lazy clause generation, etc.

Examples of SAT-Based Problem Solving |

o Function problems in FPNP[log n]
— Unweighted Maximum Satisfiability (MaxSAT)

— Minimal Correction Subsets (MCSes)
— Minimal models

e Function problems in FPNP
— Weighted Maximum Satisfiability (MaxSAT)
— Minimal Unsatisfiable Subformulas (MUSes)
Minimal Equivalent Subformulas (MESes)
— Prime implicates

e Enumeration problems
— Models
— MUSes
— MCSes

MaxSAT

Examples of SAT-Based Problem Solving Il

e Decision problems in >5
- 2QBF

Function problems in FPZ>

— (Weighted) Quantified MaxSAT (QMaxSAT)
— Smallest MUS (SMUS)

Decision problems in PSPACE
- QBF

[1JMS13]
[1JMS13]

Outline

CNF Encodings
SAT Embeddings
SAT Oracles

What Next in SAT-Based Problem Solving?

Outline

CNF Encodings

Encoding to CNF

e What to encode?
— Boolean formulas
» Tseitin's encoding
» Plaisted& Greenbaum'’s encoding
> oo
— Cardinality constraints
Pseudo-Boolean (PB) constraints
Can also translate to SAT:

Constraint Satisfaction Problems (CSPs)
Answer Set Programming (ASP)
Model Finding

vVvyyvyy

o Key issues:
— Encoding size
— Arc-consistency?

Outline

CNF Encodings
Boolean Formulas

Representing Boolean Formulas / Circuits |

e Satisfiability problems can be defined on Boolean circuits/formulas

e Can represent circuits/formulas as CNF formulas [T68,PG]

— For each (simple) gate, CNF formula encodes the consistent
assignments to the gate's inputs and output

» Given z = OP(x, y), represent in CNF z <> OP(x,y)

— CNF formula for the circuit is the conjunction of CNF formula for
each gate

Fe=(aVve)A(bVc)A(aVbVi) Z:@c
Fe=(FVEIN(EVE)A(rVsVi) ;t

Representing Boolean Formulas / Circuits Il

_@C

a b c| Feabc)
0 0 O 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 O 0
1 0 1 1
1 1 0 1
1 1 1 0

Fe=(aVe)A(bVc)A(aVbVE)

Representing Boolean Formulas / Circuits Il

e CNF formula for the circuit is the conjunction of the CNF formula
for each gate

— Can specify objectives with additional clauses

a — X
b_NAND c AND Y z=17?
D T

Representing Boolean Formulas / Circuits Il

e CNF formula for the circuit is the conjunction of the CNF formula
for each gate

— Can specify objectives with additional clauses

a — X
b_NAND c AND Y z=17?
D T

F = (aVvx)A(bVX)A(GVbBVEX)A
(xVy)A(cVy)AN(XVEVY)A

(yV2)A(dVZ)AN(yVdVZ)A(2)

e Note: z=d V (cA(=(anb)))
— No distinction between Boolean circuits and formulas

Outline

CNF Encodings

Cardinality Constraints

Cardinality Constraints

e How to handle cardinality constraints, Zlexj <k?

— How to handle AtMost1 constraints, E}’Zl Xj

= General form: 37 | x; > k, with 1 € {<, <,

17
,>,>}

IIA

e Solution #1:
— Use PB solver

— Difficult to keep up with advances in SAT technology
— For SAT/UNSAT, best solvers already encode to CNF

» E.g. Minisat+, but also QMaxSat, MSUnCore, (W)PM2

Cardinality Constraints

e How to handle cardinality constraints, Zlexj <k?

— How to handle AtMost1 constraints, E}’Zl Xj

= General form: 37 | x; > k, with 1 € {<, <,

17
, >, >

A

e Solution #1:
— Use PB solver

— Difficult to keep up with advances in SAT technology
— For SAT/UNSAT, best solvers already encode to CNF

» E.g. Minisat+, but also QMaxSat, MSUnCore, (W)PM2

e Solution #2:

— Encode cardinality constraints to CNF
— Use SAT solver

Equalsl, AtlLeastl & AtMostl Constraints

n

i=1%j = 1 encode with (3°7_; x; < 1) A (D07 x5 > 1)

o lexj > 1: encode with (x3 Vxo V...V x,)

o ZJ’.’lej < 1 encode with:

— Pairwise encoding
» Clauses: O(n®) ; No auxiliary variables
Sequential counter [S05]

» Clauses: O(n) ; Auxiliary variables: O(n)

Bitwise encoding [PO7,FPO1]
» Clauses: O(nlogn) ; Auxiliary variables: O(logn)

Bitwise Encoding

e Encode Z}’lej < 1 with bitwise encoding:

o An example: x3 +x +x3 <1

Bitwise Encoding

e Encode Z}’lej < 1 with bitwise encoding:
— Auxiliary variables vo,...,v,—1 ; r = [logn] (with n > 1)
- If x; =1, then vg...vj_1 = by ... bj_1, the binary encoding of j — 1
xp = (vo = bo)A. .. A(vjim1 = bj1) & (XV (v = bo)A...A(vj—1 = bj-1))

o An example: x3 +x +x3 <1

J—1 wvivw
X1 0 00
X2 1 01
X3 2 10

Bitwise Encoding

e Encode Z}’lej < 1 with bitwise encoding:
— Auxiliary variables vo,...,v,—1 ; r = [logn] (with n > 1)
- If x; =1, then vg...vj_1 = by ... bj_1, the binary encoding of j — 1
xp = (vo = bo)A. .. A(vjim1 = bj1) & (XV (v = bo)A...A(vj—1 = bj-1))
— Clauses (x; V (vi <+ b)) = (x;V [;), i=0,...,r — 1, where

> /,'EV,', ifb,':].
» i = v;, otherwise

o An example: x3 +x +x3 <1

j—1 wviv (% Vin)A (5 V)
x1 0 00 (V) A(%Vwv)
x 1 01 (3Vwvi)A(RVih)

X3 2 10

Bitwise

Encoding

e Encode Z}’lej < 1 with bitwise encoding:

Auxiliary variables vo,...,v,—1 ; r = [logn] (with n > 1)

If x; =1, then vp...vj—1 = by...bj_1, the binary encoding of j — 1
xp = (vo = bo)A. .. A(vjim1 = bj1) & (XV (v = bo)A...A(vj—1 = bj-1))
Clauses (xj V (vi <+ b)) = (X V i), i=0,...,r — 1, where

> /,'EV,', ifb,':].
» i = v;, otherwise

— If x; = 1, assignment to v; variables must encode j — 1
» All other x variables must take value 0

- If all x; = 0, any assignment to v; variables is consistent

— O(nlogn) clauses ; O(logn) auxiliary variables

e An example: x3 +x +x3 <1

i—1 wvw (% V) A (% V)
xx 0 00 (V) A(%Vwv)
x 1 01 (V) ARV ih)

X3 2 10

General Cardinality Constraints

o General form: 3°7 ; x; < k (or D27 ; x; > k)

— Sequential counters [S05]
» Clauses/Variables: O(n k)

— BDDs [ES06]
» Clauses/Variables: O(nk)

— Sorting networks (ES06]

» Clauses/Variables: O(nlog” n)
— Cardinality Networks: [ANORC09,ANORC11a]
» Clauses/Variables: O(nlog” k)
Pairwise Cardinality Networks: [czI10]

Outline

CNF Encodings

Pseudo-Boolean Constraints

Pseudo-Boolean Constraints

o General form: > 7 ; a;x < b

— Operational encoding [Wos]

» Clauses/Variables: O(n)
» Does not guarantee arc-consistency

— BDDs [ES06]
» Worst-case exponential number of clauses
— Polynomial watchdog encoding [BBROO]

» Let v(n) = log(n) log(amax)
» Clauses: O(n’v(n)) ; Aux variables: O(n’v(n))

Improved polynomial watchdog encoding [ANORC11b]

» Clauses & aux variables: O(n® log(amax))

Encoding PB Constraints with BDDs |

e Encode 3x1 +3x0 +x3 <3
e Construct BDD
— E.g. analyze variables by decreasing coefficients

e Extract ITE-based circuit from BDD

Encoding PB Constraints with BDDs |

e Encode 3x1 +3x0 +x3 <3
e Construct BDD
— E.g. analyze variables by decreasing coefficients

e Extract ITE-based circuit from BDD

xi 2 e
10
al b
z z
x 1 e x 2 e
0 1 0 1
a b a b
0 1
z z
x3s 2 ITE x3 3 e
0 1 0 1
al b] al o]
1 0 1 0

Encoding PB Constraints with BDDs I

e Encode 3x; +3x + x3 <3
e Extract ITE-based circuit from BDD

e Simplify and create final circuit:

Xy 2| ITE

X2 X3 X3 X2

More on PB Constraints

 How about > 7 ; a;x = k ?

More on PB Constraints

 How about > 7 ; a;x = k ?
- Canuse (37 ajx; > k) A (D572, a7 % < k), but...

> aj xj = k is a subset-sum constraint

n
=1
(special case of a knapsack constraint)

More on PB Constraints

 How about > 7 ; a;x = k ?
- Canuse (37 ajx; > k) A (D572, a7 % < k), but...

> aj xj = k is a subset-sum constraint

n
=1
(special case of a knapsack constraint)

» Cannot find all consequences in polynomial time [S03,FS02,T03]

More on PB Constraints

 How about > 7 ; a;x = k ?

- Canuse (37 ajx; > k) A (D572, a7 % < k), but...

> ;:1 aj xj = k is a subset-sum constraint
(special case of a knapsack constraint)

» Cannot find all consequences in polynomial time

e Example:

dx1 + 3x0 + 2X3 =5

[S03,FS02,T03]

More on PB Constraints

 How about > 7 ; a;x = k ?
- Canuse (37 ajx; > k) A (D572, a7 % < k), but...

j=1
> aj xj = k is a subset-sum constraint

n
j=1
(special case of a knapsack constraint)
» Cannot find all consequences in polynomial time [S03,FS02,T03]

e Example:

dx1 + 3x0 + 2X3 =5

- Replace by (4X1 + 3X2 + 2X3 2 5) N (4X1 + 3X2 + 2X3 S 5)

More on PB Constraints

 How about > 7 ; a;x = k ?
- Canuse (37 ajx; > k) A (D572, a7 % < k), but...

j=1
> aj xj = k is a subset-sum constraint

n
j=1
(special case of a knapsack constraint)
» Cannot find all consequences in polynomial time [S03,FS02,T03]

e Example:

dx1 + 3x0 + 2X3 =5

- Replace by (4X1 + 3X2 + 2X3 2 5) N (4X1 + 3X2 + 2X3 S 5)
— Let X = 0

More on PB Constraints

 How about > 7 ; a;x = k ?
- Canuse (37 ajx; > k) A (D572, a7 % < k), but...

j=1
> aj xj = k is a subset-sum constraint

n
=1
(special case of a knapsack constraint)

» Cannot find all consequences in polynomial time [S03,FS02,T03]

e Example:
4x1 +3x0 +2x3 =05
- Replace by (4X1 + 3X2 + 2X3 2 5) N (4X1 + 3X2 + 2X3 S 5)

— Let X = 0
— Either constraint can still be satisfied, but not both

Outline

CNF Encodings

Encoding CSPs

CSP Constraints

e Many possible encodings:

Direct encoding

Log encoding

Support encoding
Log-Support encoding

Order encoding for finite linear CSPs

[dK89,GJ96,W00]

[W00]

[K90,G02]

[Go7]

[TTKBO09)

Direct Encoding for CSP w/ Binary Constraints

Variable x; with domain D;, with m; = |Dj|

Represent values of x; with Boolean variables x; 1, ..., X m,

o mj J—
Require)7 xjx =1 |
— Suffices to require > " x; , > 1 [Woo]

If the pair of assignments x; = v; A x; = v; is not allowed, add
binary clause (i, V Xj.,)

Outline

SAT Embeddings

Embedding SAT Solvers

SAT Solver

e

Assignments + Assignments +
Constraints Explanations

Constraint Propagators
/ Theory Solvers

Modify SAT solver to interface
problem-specific propagators (or
theory solvers)

Typical interface:

— SAT solvers communicates
assignments/constraints to
propagators

— Retrieve resulting assignments or
explanations for inconsistency

Well-known examples (many more):

— Branch&bound PB optimization

— Non-clausal SAT solvers

— Lazy SMT solving (see later talks)

Key problem:

— Keeping up with improvements in
SAT solvers

Pseudo-Boolean Constraints & Optimization

e Pseudo-Boolean Constraints:

— Boolean variables: xq,...,x,
— Linear inequalities:

Zaijlj > bi, e {Xj!)_(j}vxj € {071}7‘9')”[31' € Ng
JEN

Pseudo-Boolean Constraints & Optimization

e Pseudo-Boolean Constraints:

— Boolean variables: xq,...,x,
— Linear inequalities:

Zaijlj > bi, e {Xj!)_(j}vxj € {071}7‘9')”[31' € Ng
JEN

¢ Pseudo-Boolean Optimization (PBO):

minimize », @05
JEN

subject to > ajjlj > bj,
JEN

/j € {)97)_(]}7)9' € {071}7aij7bhcj € N(J)r

Pseudo-Boolean Constraints & Optimization

e Pseudo-Boolean Constraints:

— Boolean variables: xq,...,x,
— Linear inequalities:

Zaijlj > b, /J € {Xj!)_(j}vxj € {Ovl}vafj’bi € N(T
JjeEN

¢ Pseudo-Boolean Optimization (PBO):

minimize », @05
JEN

subject to > ajjlj > bj,
JEN

/j € {)97)_(]}7)9' € {Ovl}vafjvbhcj € N(J)r

e Branch and bound (B&B) PBO algorithm:
— Extend SAT solver
— Must develop propagator for PB constraints
— B&B search for computing optimum cost function value
» Trivial upper bound: all x; =1

[MMS00]

Limitations with Embeddings

e B&B MaxSAT solving:

— Cannot use unit propagation
— Cannot learn clauses

e MUS extraction:
— Decision of clauses to include in MUS based on unsatisfiable
outcomes
— No immediate gain from embedding SAT solvers

Outline

SAT Oracles

Practical Aspects of Using SAT Oracles

e Incremental vs. non-incremental SAT [ES03]

Practical Aspects of Using SAT Oracles

e Incremental vs. non-incremental SAT [ES03]
— Incremental SAT:
» Replace each clause (G;) with (G V 3;), where a; is assumption

variable
» When calling SAT solver, each assumption can be assigned 1, 0, or

be left unassigned

— Non-incremental SAT:

Practical Aspects of Using SAT Oracles

e Incremental vs. non-incremental SAT [ES03]
— Incremental SAT:

» Replace each clause (G;) with (G V 3;), where a; is assumption
variable

» When calling SAT solver, each assumption can be assigned 1, 0, or
be left unassigned

» a; = 1 to activate clause G

» a; = 0 to deactivate clause C;

— Non-incremental SAT:

Practical Aspects of Using SAT Oracles

e Incremental vs. non-incremental SAT [ES03]
— Incremental SAT:

» Replace each clause (Ci) with (G V 3;), where a; is assumption
variable

» When calling SAT solver, each assumption can be assigned 1, 0, or
be left unassigned

» a; = 1 to activate clause G

» a; = 0 to deactivate clause C;

» Add clause (3;) to delete ;

— Non-incremental SAT:

Practical Aspects of Using SAT Oracles

e Incremental vs. non-incremental SAT [ES03]
— Incremental SAT:

| 2

>
>
>

>

— Non-

Replace each clause (G;) with (G V 3;), where a; is assumption
variable

When calling SAT solver, each assumption can be assigned 1, 0, or
be left unassigned

a; = 1 to activate clause G;

a; = 0 to deactivate clause C;

Add clause (3;) to delete C;

Note: incremental SAT enables clause reuse

incremental SAT:

Practical Aspects of Using SAT Oracles

e Incremental vs. non-incremental SAT [ES03]
— Incremental SAT:

>

>
>
>

>

— Non-

>
>

Replace each clause (G;) with (G V 3;), where a; is assumption
variable

When calling SAT solver, each assumption can be assigned 1, 0, or
be left unassigned

a; = 1 to activate clause C;

a; = 0 to deactivate clause C;

Add clause (3;) to delete C;

Note: incremental SAT enables clause reuse

incremental SAT:

Submit complete formula to SAT solver in each iteration
Note: difficult to instrument clause reuse

Practical Aspects of Using SAT Oracles

e Incremental vs. non-incremental SAT [ES03]
— Incremental SAT:

>

>
>
>

>

— Non-

>
>

Replace each clause (G;) with (G V 3;), where a; is assumption
variable

When calling SAT solver, each assumption can be assigned 1, 0, or
be left unassigned

a; = 1 to activate clause C;

a; = 0 to deactivate clause C;

Add clause (3;) to delete C;

Note: incremental SAT enables clause reuse

incremental SAT:

Submit complete formula to SAT solver in each iteration
Note: difficult to instrument clause reuse

e What does the SAT oracle compute/return?
1. Yes/No: (st) < SAT(F)

Practical Aspects of Using SAT Oracles

e Incremental vs. non-incremental SAT [ES03]
— Incremental SAT:

>

>
>
>

>

Replace each clause (G;) with (G V 3;), where a; is assumption
variable

When calling SAT solver, each assumption can be assigned 1, 0, or
be left unassigned

a; = 1 to activate clause G;

a; = 0 to deactivate clause C;

Add clause (3;) to delete C;

Note: incremental SAT enables clause reuse

— Non-incremental SAT:

>
>

Submit complete formula to SAT solver in each iteration
Note: difficult to instrument clause reuse

e What does the SAT oracle compute/return?
1. Yes/No: (st) < SAT(F)
2. Compute model: (st,u) < SAT(F)

Practical Aspects of Using SAT Oracles

e Incremental vs. non-incremental SAT [ES03]
— Incremental SAT:

>

>
>
>

>

Replace each clause (G;) with (G V 3;), where a; is assumption
variable

When calling SAT solver, each assumption can be assigned 1, 0, or
be left unassigned

a; = 1 to activate clause G;

a; = 0 to deactivate clause C;

Add clause (3;) to delete C;

Note: incremental SAT enables clause reuse

— Non-incremental SAT:

>
>

Submit complete formula to SAT solver in each iteration
Note: difficult to instrument clause reuse

e What does the SAT oracle compute/return?
1. Yes/No: (st) < SAT(F)
2. Compute model: (st,u) < SAT(F)
3. Compute unsatisfiable cores: (st, j1,U) <= SAT(F)

Practical Aspects of Using SAT Oracles

e Incremental vs. non-incremental SAT [ES03]
— Incremental SAT:
» Replace each clause (Ci) with (G V 3;), where a; is assumption
variable
» When calling SAT solver, each assumption can be assigned 1, 0, or
be left unassigned
» a; = 1 to activate clause
» a; = 0 to deactivate clause C;
» Add clause (3;) to delete ;
» Note: incremental SAT enables clause reuse
— Non-incremental SAT:
» Submit complete formula to SAT solver in each iteration
» Note: difficult to instrument clause reuse

e What does the SAT oracle compute/return?
1. Yes/No: (st) < SAT(F)
2. Compute model: (st,u) < SAT(F)
3. Compute unsatisfiable cores: (st, j1,U) <= SAT(F)
4. Compute proof traces/resolution proof: (st,u,T) < SAT(F)

Outline

SAT Oracles
MUS Extraction

Defining MUSes

X6 V Xo —Xg V Xo —x2 V X1 el
—Xg V Xg Xe V —Xg X2 V Xy X4 V Xg
X7 V X —x7 V Xp —1X5 V X3 X3

e Formula is unsatisfiable but not irreducible

Defining MUSes

X6 V Xo —Xg V Xo —x2 V X1 —X1
—Xg V Xg Xe V —1Xg X2 V Xy X4 V Xg
x7 V X5 —x7 V Xs —X5 V X3 X3

e Formula is unsatisfiable but not irreducible

e Can remove clauses, and formula still unsatisfiable

Defining MUSes

X6 V Xo —Xg V Xo —x2 V X1 el
—Xg V Xg Xg V —Xg X2 V Xq —Xq V Xs
x7 V X5 —x7 V Xs —X5 V X3 X3

e Formula is unsatisfiable but not irreducible

e Can remove clauses, and formula still unsatisfiable

¢ A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and
irreducible subformula

Defining MUSes

X6 V Xo —Xg V Xo —x2 V X1 —X1
—Xg V Xg Xg V —Xg X2 V Xq —Xq V Xs
X7 V X —x7 V Xp —1X5 V X3 X3

e Formula is unsatisfiable but not irreducible

e Can remove clauses, and formula still unsatisfiable

¢ A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and
irreducible subformula

Defining MUSes

X6 V Xo —Xg V Xo —x2 V X1 el
—Xg V Xg X6 V —1Xg Xo V Xy X4 V Xg
x7 V X5 —x7 V Xs —1X5 V X3 —1X3

e Formula is unsatisfiable but not irreducible

e Can remove clauses, and formula still unsatisfiable

¢ A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and
irreducible subformula

Defining MUSes

X6 V Xo —Xg V Xo —x2 V X1 —X1
—Xg V Xg X6 V —1Xg Xo V Xy X4 V Xg
X7 V X —x7 V Xs —X5 V X3 X3

Formula is unsatisfiable but not irreducible

e Can remove clauses, and formula still unsatisfiable

A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and
irreducible subformula

How to compute an MUS?

Deletion-Based MUS Extraction

Input : Unsatisfiable CNF Formula F
Output: MUS M
begin
M~ F // MUS over-approximation
foreach c € M do
if not SAT(M \ {c}) then
L | M M\{c} // 1f UNSAT(M \ {c}), then c & M
return M // Final M is MUS

end

e Number of calls to SAT solver: O(|F))

Deletion-Based MUS Extraction

Input : Unsatisfiable CNF Formula F
Output: MUS M
begin
M~ F // MUS over-approximation
foreach c € M do
if not SAT(M \ {c}) then
L LM%M\{C} // Remove c¢ from M
return M // Final M is MUS

end

e Number of calls to SAT solver: O(|F))

An Example

UNSAT instance

An Example

Hide clause (—xy V x2)

An Example

SAT instance — keep clause (—x1 V x2)

An Example

Hide clause (—x3 V x2)

(ﬁXl V X2)

(X]_ V X2)
(—x3)
(—x2)

An Example

(ﬁXl V X2)
(X1 V X2)

(—x3)
(—x2)

UNSAT instance — remove clause (—x3 V x2)

An Example

(ﬁXl V X2)

—\X3)
—\X2)

—

Hide clause (x1 V x2)

An Example

(ﬁXl V X2)

(—x3)
(

—\X2)

SAT instance — keep clause (x1 V x2)

An Example

(ﬁXl V X2)
(X1 V X2)

(—x2)

Hide clause (—x3)

An Example

(ﬁXl V X2)
(X1 V X2)

(—x2)

UNSAT instance — remove clause (—x3)

An Example

(ﬁXl V X2)

(X]_ V X2)

Hide clause (—x2)

An Example

(ﬁXl V X2)

(X1 V X2)

SAT instance — keep clause (—x2)

An Example

(ﬁXl V X2)
(X1 V X2)
(%)

Computed MUS

More on MUS Extraction

Algorithm # Oracle Calls Reference
Insertion (Default) O(m x k) [sPag]
Deletion (Default) O(m) [CD91,BDTWO3]
QuickXplain O(k x (1+1log 7)) [J01,J04]
Dichotomic O(k x log m) [HLSBOG]
Insertion with Relaxation Variables ~ O(m) [MSL11]
Deletion with Model Rotation O(m) [BLMS12,M5L11]
Progression O(k x log(1+ 7)) [MSJB13]

More on MUS Extraction

Algorithm # Oracle Calls Reference
Insertion (Default) O(m x k) [sPag]
Deletion (Default) O(m) [CD91,BDTWO3]
QuickXplain O(k x (1+1log 7)) [J01,J04]
Dichotomic @)

(
(
(k
(k x log m) [HLSBOG]
(m
(m
(

Insertion with Relaxation Variables O(m) [MSL11]
Deletion with Model Rotation O(m) [BLMS12,MSL11]
Progression O(k x log(1+ 7)) [MSJB13]
e Additional Techniques:
— Restrict formula to unsatisfiable subsets [BDTW93,HLSB06, DHNO6,MSL11]
— Check redundancy condition [vMW08, MSL11,BLMS12]

— Model rotation, recursive model rotation, etc. [vsL11.BMS11,BLMS12,W12]

Outline

SAT Oracles

MaxSAT

Defining Maximum Satisfiability

X6 V X2 —Xg V X2 —x2 V X1 X1
—Xg V Xg Xe V —Xg X2 V Xg —1Xq V Xz
X7 V Xs —x7 V Xp —1X5 V X3 —1X3

e Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

Defining Maximum Satisfiability

X6 V X2 —Xg V Xo —x2 V X1 X1
—Xg V Xg Xe V —Xg X2 V Xg X3 V Xg
x7 V X5 —x7 V Xz —1x5 V X3 X3

e Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

e A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

Defining Maximum Satisfiability

Xe V X2 —Xg V Xo —x2 V X1 sl
—Xg V Xg Xe V —Xg X2 V Xg —1xq V Xz
x7 V X5 —x7 V Xz —1x5 V X3 X3

e Given unsatisfiable formula, find largest subset of clauses that is
satisfiable

e A Minimal Correction Subset (MCS) is an irreducible relaxation of
the formula

e The MaxSAT solution is one of the smallest MCSes

MaxSAT Problem(s)

e MaxSAT:
— All clauses are soft
— Maximize number of satisfied soft clauses
— Minimize number of unsatisfied soft clauses

MaxSAT Problem(s)

e MaxSAT:

— All clauses are soft
— Maximize number of satisfied soft clauses
— Minimize number of unsatisfied soft clauses

e Partial MaxSAT:

— Hard clauses must be satisfied
— Minimize number of unsatisfied soft clauses

MaxSAT Problem(s)

e MaxSAT:

— All clauses are soft
— Maximize number of satisfied soft clauses
— Minimize number of unsatisfied soft clauses

e Partial MaxSAT:

— Hard clauses must be satisfied
— Minimize number of unsatisfied soft clauses

e Weighted MaxSAT

— Weights associated with (soft) clauses
— Minimize sum of weights of unsatisfied clauses

MaxSAT Problem(s)

MaxSAT:
— All clauses are soft
— Maximize number of satisfied soft clauses
— Minimize number of unsatisfied soft clauses

Partial MaxSAT:

— Hard clauses must be satisfied
— Minimize number of unsatisfied soft clauses

Weighted MaxSAT

— Weights associated with (soft) clauses
— Minimize sum of weights of unsatisfied clauses

Weighted Partial MaxSAT
— Weights associated with soft clauses
— Hard clauses must be satisfied
— Minimize sum of weights of unsatisfied soft clauses

Definitions

e Cost of assignment:
— Sum of weights of unsatisfied clauses
e Optimum solution (OPT):
— Assignment with minimum cost
e Upper Bound (UB):
— Assignment with cost not less than OPT
- Eg. ZQEW w; + 1; hard clauses may be inconsistent

e Lower Bound (LB):

— No assignment with cost no larger than LB
— E.g. —1; it may be possible to satisfy all soft clauses

Definitions

Cost of assignment:
— Sum of weights of unsatisfied clauses
e Optimum solution (OPT):
— Assignment with minimum cost
Upper Bound (UB):
— Assignment with cost not less than OPT
- Eg. ZQEW w; + 1; hard clauses may be inconsistent
Lower Bound (LB):

— No assignment with cost no larger than LB
— E.g. —1; it may be possible to satisfy all soft clauses

OPT

LB uB

Iterative SAT Solving — Refine UB

OPT

LB ' UB,

e Require Y w;r < UBy —1

Iterative SAT Solving — Refine UB

OPT

LB UB;
e Require Y w;r < UBy —1
e While SAT, refine UB

— New UB given by cost of unsatisfied clauses, i.e. > w; r;

Iterative SAT Solving — Refine UB

OPT

LB UB,
e Require Y w;r < UBy —1
e While SAT, refine UB

— New UB given by cost of unsatisfied clauses, i.e. > w; r;

Iterative SAT Solving — Refine UB

OPT

LB UB,

e Require Y w;r < UBy —1

e While SAT, refine UB
— New UB given by cost of unsatisfied clauses, i.e. > w; r;

e Repeat until constraint > w; r; < UBy — 1 becomes UNSAT
— UBy denotes the optimum value

Iterative SAT Solving — Refine UB

OPT

LB UB,

Require > w;r; < UBy —1
While SAT, refine UB
— New UB given by cost of unsatisfied clauses, i.e. > w; r;
Repeat until constraint > w; r; < UB; — 1 becomes UNSAT
— UBy denotes the optimum value

Worst-case # of iterations exponential on instance size

Iterative SAT Solving — Refine UB

OPT

LB UB,

Require > w;r; < UBy —1
While SAT, refine UB
— New UB given by cost of unsatisfied clauses, i.e. > w; r;
Repeat until constraint > w; r; < UB; — 1 becomes UNSAT
— UBy denotes the optimum value

Worst-case # of iterations exponential on instance size

Example tools:

Minisat+: CNF encoding of constraints [ES06]
SATA4J: native handling of constraints [LBP10]
— QMaxSat: CNF encoding of constraints [KZFH12]

Fu&Malik's Core-Guided Approach

Xe V X2 —1Xg V Xo —1x2 V X1
—Xg V Xg X6 V —1Xg X2 V Xq
x7 V Xz —x7 V X5 —X5 V X3

Example CNF formula

—|X1

—Xg V X5

—|X3

Fu&Malik's Core-Guided Approach

Xe V X2 —1Xg V Xo —1x2 V X1
—Xg V Xg X6 V —Xg X2 V Xg
x7 V X5 —x7 V X5 —X5 V X3

—|X1

—Xg V Xs

—|X3

Formula is UNSAT; OPT < || — 1; Get unsat core

Fu&Malik's Core-Guided Approach

Xe V X2 —1Xg V Xo —x2 V x1Vn

—1Xg V Xg Xe V —1Xg X2 V x4V 13

x7 V Xg —x7 V Xg x5 V xX3Vr5
Z?:l i<l

Add relaxation variables and AtMostl constraint

—x1Vh

x4 V X5Viyg

—x3Vrg

Fu&Malik's Core-Guided Approach

@2 —Xe V X —xo Vx1Vnr —x1Vr
—1Xg V Xg Xp V —1Xg X2 V x4V 13 =Xy @

—x7 V X5 —X5 V X3V 5 —x3Vrg

Formula is (again) UNSAT; OPT < || — 2; Get unsat core

Fu&Malik's Core-Guided Approach

Xe V xoVrg —Xg VXxoVrg —xoVx1VrVrg —x1VrnVrg
—Xg V Xg X6 V —Xxg X2 V xa4Vr3 —Xg V X5V 1y
x7V x5V —x7VXxsVro —x5Vx3VrsVrn3 —x3VirgVrig

2?21 <1 }i7 <1

Add new relaxation variables and AtMostl constraint

Fu&Malik's Core-Guided Approach

X V XoVry —Xg VXoVrg —x2Vx1VnVn —x1VrnVro
—Xg V Xg X6 V —1Xg X2 V xaVr3 —Xq V X5V Iy
x7 V x5V —x7VXxsVro —x5VXx3VrsVrn3 —x3VirgVrig

6 14
Yiqri<l1 i—rri <1

Instance is now SAT

Fu&Malik's Core-Guided Approach

Xe V xoVrg —Xg VXxoVrg —xoVx1VrVrg —x1VrnVrg
—Xg V Xg X6 V —Xxg X2 V xa4Vr3 —Xg V X5V 1y
x7V x5V —x7VXxsVro —x5Vx3VrsVrn3 —x3VirgVrig

Z?:lriSI }i7r,-§1

MaxSAT solution is |p| —Z =12 —2 =10

Organization of Fu&Malik's Algorithm

e Clauses characterized as:

— Soft: initial set of soft clauses
— Hard: initially hard, or added during execution of algorithm

» E.g. clauses from AtMostl constraints

e While exist unsatisfiable cores [FMos]

— Add fresh set B of relaxation variables to soft clauses in core
— Add new AtMost1 constraint

> bi<1

b;eB

» At most 1 relaxation variable from set B can take value 1

e (Partial) MaxSAT solution is |¢| —Z
— Z: number of iterations (= number of computed unsat cores)

Organization of Fu&Malik's Algorithm

e Clauses characterized as:

— Soft: initial set of soft clauses
— Hard: initially hard, or added during execution of algorithm

» E.g. clauses from AtMostl constraints

e While exist unsatisfiable cores [FMos]

— Add fresh set B of relaxation variables to soft clauses in core
— Add new AtMost1 constraint

RS
bEB
» At most 1 relaxation variable from set B can take value 1

e (Partial) MaxSAT solution is |¢| —Z
— Z: number of iterations (= number of computed unsat cores)

e Can be adapted for weighted MaxSAT [ABL09a,MMSPOO]

Oracle-Based MaxSAT Solving |

e lterative: [MHLPMS13]
— Linear search SAT/UNSAT (refine UB) [e.g. LBP10]
— Linear search UNSAT /SAT (refine LB)
— Binary search [e.g. FMOG6]
— Bit-based
— Mixed linear/binary search [e.g. KZFH12]
e Core-Guided: [MHLPMS13,ABL13]
- FM/(W)MSU1.X/WPM1 [FMO06,MSM08,MMSP09, ABL09a,ABGL12]
- (W)MSU3 [MSPO7]
- (W)MSU4 [MSPOg]
- (W)PM2 [ABLO09a,ABLO9b,ABL10,ABGL13]
— Core-guided binary search (w/ disjoint cores) [HMMS11,MHMS12]

» Bin-Core, Bin-Core-Dis, Bin-Core-Dis2

e |terative subsetting [DB11,DB13a,DB13b]

Oracle MaxSAT Solving Il

e A sample of recent algorithms:

Algorithm # Oracle Calls
Linear search SU Exponential
Binary search Linear
WMSU1/WPM1 Exponential*
WPM?2 Exponential*
Bin-Core-Dis Linear

Iterative subsetting Exponential

[FM06,MSM08,MMSP09,ABL09a,ABGL12]

[HMMS11,MHMS12]

[DB11,DB13a,DB13b]

* Weighted case; depends on computed cores

e Example MaxSAT solvers:

— MSUnCore; WPM1, WPM2; QMaxSAT; SAT4J; etc.

Outline

SAT Oracles

2QBF

Problem Statement

[GMN0Y]

Given: IXVY. ¢, where ¢ is a propositional formula
Question: Is there an assignment 7 to X such that VY. ¢[X/7]?

Problem Statement
[GMNO9]

Given: IXVY. ¢, where ¢ is a propositional formula
Question: Is there an assignment 7 to X such that VY. ¢[X/7]?

Example

Ixt, xo Yy1, yo. (x1 = y1) A (x2 = y2)

solution: x1 =0,x =0

Motivation

o ¥ complete

e interesting problems in this class, e.g. certain nonmonotonic
reasoning, aspects of model checking, conformant planning

e separate track at QBF Eval

Looking at Assignments

Y

Looking at Assignments

Y

Looking at Assignments

Looking at Assignments

Looking at Assignments

Y 7
X

¢l1]o 01
r[1]1 1[1

Expanding AXVY. ¢ into SAT

IXVY. ¢ — SAT(A ¢[Y/,,L]>

MGB‘Yl

Expanding AXVY. ¢ into SAT

IXVY. ¢ — SAT(A ¢[Y/,,L]>

MGB‘Yl

Example

E]Xl,XQVy]_,yz. (X1 — y1) A\ (X2 — y2) AN ()_<1 V)_<2)

Expansion:
(X1 — 0) VAN (X2 — 0) VAN (X1 VX2)
AN (x4 0)Ae o 1)AGLY X)
AN (X1(—)l)/\(X2<—)O)/\(X1 \/XQ)
AN (e DA)AGLY X)

Expanding AXVY. ¢ into SAT

IXVY. ¢ — SAT(A ¢[Y/,,L]>

MGB‘Yl

Example

E]Xl,XQVy]_,yz. (X1 — y1) A\ (X2 — y2) AN ()_<1 V)_<2)

Expansion:
(X1 — 0) VAN (X2 — 0) VAN (X1 VX2)
AN (x4 0)Ae o 1)AGLY X)
AN (X1(—)l)/\(X2<—)O)/\(X1 \/X2)
VAN (X1<—>1)/\(X2<—>1)/\(X1 \/)_(2)

Abstraction of IXVY. ¢

e Consider only some set of assignments w C B!Y/

N LY /u]

peEW

Abstraction of IXVY. ¢

e Consider only some set of assignments w C B!Y/

N LY /u]

peEW

e If a solution to the problem is a solution to the abstraction

A oly/m = N oly/ul

MGBM HEW

Abstraction of IXVY. ¢

e Consider only some set of assignments w C B!Y/

N LY /u]

peEW

e If a solution to the problem is a solution to the abstraction

A oly/m = N oly/ul

MGBM HEW

e But not the other way around, a solution to an abstraction is not
necessarily a solution to the original problem.

CEGAR Loop

input : IXVY.¢
output: (true, 7) if there exists 7 s.t. VY. ¢[X /7],
(false,—) otherwise

w + 0;
while true do
(outcy, 7) = SAT(A e, #[Y /1) // find a candidate
if outcy = false then
‘ return (false,-); // no candidate found
end
if “7is a solution”; // solution check
then
| return (true, 7)
else
‘ “Grow w"; // refinement
end

end

CEGAR Loop

input : IXVY.¢
output: (true, 7) if there exists 7 s.t. VY. ¢[X /7],
(false,—) otherwise

w0
while true do
(outcy, 7) < SAT(A e, LY /1)) // find a candidate
if outcy = false then
‘ return (false,-); // no candidate found
end
if “7 is a solution”’; // solution check
then
| return (true, 7)
else
‘ “Grow w"; // refinement
end

end

Testing for Solution

A value 7 is a solution to IXVY. ¢ iff
VY. o[X /7] iff UNSAT(—¢[X/7])

Testing for Solution

A value 7 is a solution to IXVY. ¢ iff
VY. o[X /7] iff UNSAT(—¢[X/7])

If SAT(—¢[X/7]) by some p, then p is a counterexample to 7

Testing for Solution

A value 7 is a solution to IXVY. ¢ iff
VY. o[X /7] iff UNSAT(—¢[X/T])
If SAT(—¢[X/7]) by some p, then p is a counterexample to 7
Example
Ixt, x2 Yy, ya. (= y1) A (e = y2)
e candidate: x; =1, =1
e counterexamples: y; =0,y, =0

)’1:07}/2:1
yi=1y,=0

Refinement

T2

T1

Refinement

T2

T1

Refinement

XX x

AReQS (Abstraction Refinement-based QBF Solver)

input : IXVY.¢
output: (true, 7) if there exists 7 s.t. VY. ¢[X /7],
(false,—) otherwise

w <+ 0; // start with the empty expansion
while true do
(outcy, 7) < SAT(A e, LY /1)) // find a candidate
if outcy = false then
‘ return (false,-); // no candidate found
end
(outcy,) < SAT (—¢[X/7]); // find a counterexample
if outco = false then
‘ return (true, 7) ; // candidate is a solution
end
w+—wU{p}; // refine

end

AReQS — Conclusions

e ... is a CEGAR-based algorithm for 2QBF [UMs11]

AReQS — Conclusions

e ... is a CEGAR-based algorithm for 2QBF [UMs11]

e ... uses SAT solver as an oracle

AReQS — Conclusions

e ... is a CEGAR-based algorithm for 2QBF [UMs11]
e ... uses SAT solver as an oracle

e ... gradually expands given 2QBF into a SAT formula

AReQS — Conclusions

.. is a CEGAR-based algorithm for 2QBF [MS11]

. uses SAT solver as an oracle

... gradually expands given 2QBF into a SAT formula

e Can be extended to arbitrary number of levels by recursion
(RAReQS) [JKMSC12]

Outline

What Next in SAT-Based Problem Solving?

SAT-Based Problem Solving — A Glimpse of the Future

Remarkable (and increasing) number of applications of SAT

Can use SAT for solving problems in different complexity classes
- FP"Pllog n], FPNP, ...
— E.g. tackling problems in the polynomial hierarchy

e Many new recent algorithms for concrete problems
— MaxSAT
— MUSes
— MCSes
— Enumeration problems

e Better encodings?

White-box vs. black-box approaches?
— But use of oracles inevitable in many cases

Thank You

References — DPLL & CDCL SAT Solvers |

DP60

DLL62

MSS96

BS97

797
GSK98

MSS99

BMS00

MMZZMO01

M. Davis, H. Putnam: A Computing Procedure for Quantification Theory. J.
ACM 7(3): 201-215 (1960)

M. Davis, G. Logemann, D. Loveland: A machine program for theorem-
proving. Commun. ACM 5(7): 394-397 (1962)

J. Marques-Silva, K. Sakallah: GRASP - a new search algorithm for satisfia-
bility. ICCAD 1996: 220-227

R. Bayardo Jr., R. Schrag: Using CSP Look-Back Techniques to Solve Real-
World SAT Instances. AAAI/IAAI 1997: 203-208

H. Zhang: SATO: An Efficient Propositional Prover. CADE 1997: 272-275

C. Gomes, B. Selman, H. Kautz: Boosting Combinatorial Search Through
Randomization. AAAI 1998: 431-437

J. Marques-Silva, K. Sakallah: GRASP: A Search Algorithm for Propositional
Satisfiability. IEEE Trans. Computers 48(5): 506-521 (1999)

L. Baptista, J. Marques-Silva: Using Randomization and Learning to Solve
Hard Real-World Instances of Satisfiability. CP 2000: 489-494

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik: Chaff: Engineering
an Efficient SAT Solver. DAC 2001: 530-535

References — DPLL & CDCL SAT Solvers Il

GNO2

ES03
PDO7

HO7

ABHJS08

B08
SB09
VG09

AS09

SSS12

E. Goldberg, Y. Novikov: BerkMin: A Fast and Robust Sat-Solver. DATE
2002: 142-149

N. Een, Niklas Sorensson: An Extensible SAT-solver. SAT 2003: 502-518

K. Pipatsrisawat, A. Darwiche: A Lightweight Component Caching Scheme
for Satisfiability Solvers. SAT 2007: 294-299

J. Huang: The Effect of Restarts on the Efficiency of Clause Learning. 1JCAI
2007: 2318-2323

G. Audemard, L. Bordeaux, Y. Hamadi, S. Jabbour, L. Sais: A Generalized
Framework for Conflict Analysis. SAT 2008: 21-27

A. Biere: PicoSAT Essentials. JSAT 4(2-4): 75-97 (2008)
N. Sorensson, A. Biere: Minimizing Learned Clauses. SAT 2009: 237-243

A. Van Gelder: Improved Conflict-Clause Minimization Leads to Improved
Propositional Proof Traces. SAT 2009: 141-146

G. Audemard, L. Simon: Predicting Learnt Clauses Quality in Modern SAT
Solvers. 1JCAI 2009: 399-404

A. Sabharwal, H. Samulowitz, M. Sellmann: Learning Back-Clauses in SAT.
SAT 2012: 498-499

References — CNF Encodings |

T68

B68

PG86

dK89

GJ96

W98

W00

G. Tseitin: On the complexity of derivation in propositional calculus. In:
Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical
Logic, pp. 115-125 (1970)

K. Batcher: Sorting Networks and Their Applications. AFIPS Spring Joint
Computing Conference 1968: 307-314

David A. Plaisted, Steven Greenbaum: A Structure-Preserving Clause Form
Translation. J. Symb. Comput. 2(3): 293-304 (1986)

Johan de Kleer: A Comparison of ATMS and CSP Techniques. 1JCAI 1989:
290-296

R. Genisson, P. Jegou: Davis and Putnam were Already Checking Forward.
ECAI 1996: 180-184

J. Warners: A Linear-Time Transformation of Linear Inequalities into Con-
junctive Normal Form. Inf. Process. Lett. 68(2): 63-69 (1998)

T. Walsh: SAT v CSP. CP 2000: 441-456

References — CNF Encodings |l

FPO1

FS02

S03

FO3

S05

ES06

GO7

Po7

A. Frisch, T. Peugniez: Solving Non-Boolean Satisfiability Problems with
Stochastic Local Search. [JCAI 2001: 282-290

T. Fahle, M. Sellmann: Cost Based Filtering for the Constrained Knapsack
Problem. Annals OR 115(1-4): 73-93 (2002)

M. Sellmann: Approximated Consistency for Knapsack Constraints. CP 2003:
679-693

M. Trick: A Dynamic Programming Approach for Consistency and Propaga-
tion for Knapsack Constraints. Annals OR 118(1-4): 73-84 (2003)

C. Sinz: Towards an Optimal CNF Encoding of Boolean Cardinality Con-
straints. CP 2005: 827-831

N. Een, N. Sorensson: Translating Pseudo-Boolean Constraints into SAT.
JSAT 2(1-4): 1-26 (2006)

M. Gavanelli: The Log-Support Encoding of CSP into SAT. CP 2007: 815-
822

S. Prestwich: Variable Dependency in Local Search: Prevention Is Better
Than Cure. SAT 2007: 107-120

References — CNF Encodings Il

ANORCO09

BBR09

TTKB09

CZI10

ANORCl11a

ANORC11b

R. Asin, R. Nieuwenhuis, A. Oliveras, E. RodrAguez—CarboneIl: Cardinality
Networks and Their Applications. SAT 2009: 167-180

O. Bailleux, Y. Boufkhad, O. Roussel: New Encodings of Pseudo-Boolean
Constraints into CNF. SAT 2009: 181-194

Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, Mutsunori Banbara: Com-
piling finite linear CSP into SAT. Constraints 14(2): 254-272 (2009)

M. Codish, M. Zazon-lvry: Pairwise Cardinality Networks. LPAR (Dakar)
2010: 154-172

R. Asin, R. Nieuwenhuis, A. Oliveras, E. RodrAguez—CarboneIl: Cardinality
Networks: a theoretical and empirical study. Constraints 16(2): 195-221
(2011)

I. Abio, R. Nieuwenhuis, A. Oliveras, E. Rodriguez-Carbonell: BDDs for
Pseudo-Boolean Constraints - Revisited. SAT 2011

References — Embedding SAT Solvers, Iterative MaxSAT &
PBO

MMS06 V. Manquinho, J. Marques-Silva: On Using Cutting Planes in Pseudo-
Boolean Optimization. JSAT 2(1-4): 209-219 (2006)
NOTO06 R. Nieuwenhuis, A. Oliveras, C. Tinelli: Solving SAT and SAT Modulo The-

ories: From an abstract Davis—Putnam—Logemann—Loveland procedure to
DPLL(T). J. ACM 53(6): 937-977 (2006)

S07 R. Sebastiani: Lazy Satisability Modulo Theories. JSAT 3(3-4): 141-224
(2007)

BSSTO09 C. Barrett, R. Sebastiani, S. Seshia, C. Tinelli: Satisfiability Modulo Theories.
Handbook of Satisfiability 2009: 825-885

LBP10 D. Le Berre, A. Parrain: The Sat4j library, release 2.2. JSAT 7(2-3): 59-6
(2010)

KZFH12 M. Koshimura, T. Zhang, H. Fujita, R. Hasegawa: QMaxSAT: A Partial

Max-SAT Solver. JSAT 8(1/2): 95-100 (2012)

References — MUSes |

SP88

CDhoa1

BDTW93

Jo1

Jo4

HLSB06

CMPO7

vMWO08

J. de Siqueira, J.-F. Puget: Explanation-Based Generalisation of Failures.
ECAI 1988: 339-344

J. Chinneck, E. Dravnieks: Locating Minimal Infeasible Constraint Sets in
Linear Programs. INFORMS Journal on Computing 3(2): 157-168 (1991)

R. R. Bakker, F. Dikker, F. Tempelman, P. M. Wognum: Diagnosing and
Solving Over-Determined Constraint Satisfaction Problems. [JCAI 1993:
276-281

U. Junker: QUICKXPLAIN: Conflict Detection for Arbitrary Constraint Prop-
agation Algorithms, WMSPC 1JCAI 2001

U. Junker: QUICKXPLAIN: Preferred Explanations and Relaxations for Over-
Constrained Problems. AAAI 2004: 167-172

F. Hemery, C. Lecoutre, L. Sais, F. Boussemart: Extracting MUCs from
Constraint Networks. ECAI 2006: 113-117

E. Gregoire, B. Mazure, C. Piette: Local-search Extraction of MUSes. Con-
straints 12(3): 325-344 (2007)

H. van Maaren, S. Wieringa: Finding Guaranteed MUSes Fast. SAT 2008:
291-304

References — MUSes ||

DGHP09

MS10

MSL11

BMS11

BLMS12

BMS12

W12

MSJB13

C. Desrosiers, P. Galinier, A. Hertz, S. Paroz: Using heuristics to find minimal
unsatisfiable subformulas in satisfiability problems. J. Comb. Optim. 18(2):
124-150 (2009)

J. Marques-Silva: Minimal Unsatisfiability: Models, Algorithms and Applica-
tions. ISMVL 2010: 9-14

J. Marques-Silva, I. Lynce: On Improving MUS Extraction Algorithms. SAT
2011: 159-173

A. Belov, J. Marques-Silva: Accelerating MUS extraction with recursive
model rotation. FMCAD 2011: 37-40

A. Belov, I. Lynce, J. Marques-Silva: Towards Efficient MUS Extraction. Al
Communications, 25(2): 97-116 (2012)

A. Belov, J. Marques-Silva: MUSer2: An Efficient MUS Extractor, System
Description. Journal on Satisfiability, Boolean Modeling and Computation,
8: 123-128 (2012)

Siert Wieringa: Understanding, Improving and Parallelizing MUS Finding
Using Model Rotation. CP 2012: 672-687

J. Marques-Silva, M. Janota, A. Belov: Minimal Sets over Monotone Predi-
cates in Boolean Formulae. CAV 2013

References — Core-Guided MaxSAT |

FMO06

MSPO7

MSP08

MSMO08

MMSP09

ABL09a

ABL09b

ABL10

HMMS11

Z. Fu, S. Malik: On Solving the Partial MAX-SAT Problem. SAT 2006:
252-265

J. Marques-Silva, J. Planes: On Using Unsatisfiability for Solving Maximum
Satisfiability CoRR abs/0712.1097: (2007)

J. Marques-Silva, Jordi Planes: Algorithms for Maximum Satisfiability using
Unsatisfiable Cores. DATE 2008: 408-413

J. Marques-Silva, V. Manquinho: Towards More Effective Unsatisfiability-
Based Maximum Satisfiability Algorithms. SAT 2008: 225-230

V. Manquinho, J. Marques Silva, J. Planes: Algorithms for Weighted Boolean
Optimization. SAT 2009: 495-508

C. Ansotegui, M. Bonet, J. Levy: Solving (Weighted) Partial MaxSAT
through Satisfiability Testing. SAT 2009: 427-440

C. Ansotegui, M. L. Bonet, J. Levy: On Solving MaxSAT Through SAT.
CCIA 2009: 284-292

C. Ansotegui, M. Bonet, J. Levy: A New Algorithm for Weighted Partial
MaxSAT. AAAI 2010

F. Heras, A. Morgado, J. Marques-Silva: Core-Guided Binary Search Algo-
rithms for Maximum Satisfiability. AAAI 2011.

References — Core-Guided MaxSAT

DB11

MHMS12

ABGL12

DB13a

ABL13

ABGL13

DB13b

MHLPMS13

J. Davies, F. Bacchus: Solving MAXSAT by Solving a Sequence of Simpler
SAT Instances. CP 2011: 225-239

A. Morgado, F. Heras, J. Marques-Silva: Improvements to Core-Guided Bi-
nary Search for MaxSAT. SAT 2012.

C. Ansotegui, M. Bonet, J. Gabas, J. Levy: Improving SAT-Based Weighted
MaxSAT Solvers. CP 2012: 86-101

J. Davies, F. Bacchus: Exploiting the Power of MIP Solvers in MaxSAT. SAT
2013: 166-181

C. Ansotegui, M. Bonet, J. Levy: SAT-based MaxSAT algorithms. Artif.
Intell. 196: 77-105 (2013

C. Ansotegui, M. Bonet, J. Gabas and J. Levy: Improving WPM2 for
(Weighted) Partial MaxSAT. CP 2013

J. Davies and F. Bacchus: Postponing Optimization to Speed Up MaxSAT
Solving. CP 2013

A. Morgado, F. Heras, M. Liffiton, J. Planes, J. Marques-Silva: lterative and
Core-Guided MaxSAT Solving: A Survey and Assessment. Constraints: An
International Journal. In Press (2013)

References — 2QBF & QBF

GMNO09

JMS11

JKMSC12

KJMSC13

E. Giunchiglia, P. Marin, M. Narizzano: Reasoning with Quantified Boolean
Formulas. Handbook of Satisfiability 2009: 761-780

M. Janota, J. Marques-Silva: Abstraction-Based Algorithm for 2QBF. SAT
2011: 230-244

M. Janota, W. Klieber, J. Marques-Silva, E. Clarke: Solving QBF with Coun-
terexample Guided Refinement. SAT 2012: 114-128

W. Klieber, M. Janota, J. Marques-Silva, E. Clarke: Solving QBF with Free
Variables. CP 2013

References — Additional References

R65

c71

ZMO03

SP04

EB0O5

HJB11

JHB12
1JMS13

LB13

J. Robinson: A Machine-Oriented Logic Based on the Resolution Principle.
J. ACM 12(1): 23-41 (1965)

S. Cook: The Complexity of Theorem-Proving Procedures. STOC 1971:
151-158

L. Zhang, S. Malik: Validating SAT Solvers Using an Independent Resolution-
Based Checker: Practical Implementations and Other Applications. DATE
2003: 10880-10885

S. Subbarayan, D. Pradhan: NiVER: Non-increasing Variable Elimination
Resolution for Preprocessing SAT Instances. SAT 2004: 276-291

N. Een, A. Biere: Effective Preprocessing in SAT Through Variable and Clause
Elimination. SAT 2005: 61-75

M. Heule, M. Jarvisalo, A. Biere: Efficient CNF Simplification Based on
Binary Implication Graphs. SAT 2011: 201-215

M. Jarvisalo, M. Heule, A. Biere: Inprocessing Rules. IJCAR 2012: 355-370

A. Ignatiev, M. Janota, J. Marques-Silva: Quantified Maximum Satisfiability:
- A Core-Guided Approach. SAT 2013: 250-266

J.-M. Lagniez, A. Biere: Factoring Out Assumptions to Speed Up MUS
Extraction. SAT 2013: 276-292

	CDCL SAT Solvers
	Basic Definitions
	DPLL Solvers
	CDCL Solvers
	Clause Learning, UIPs & Minimization
	Search Restarts & Lazy Data Structures

	What Next in CDCL Solvers?

	SAT-Based Problem Solving
	CNF Encodings
	Boolean Formulas
	Cardinality Constraints
	Pseudo-Boolean Constraints
	Encoding CSPs

	SAT Embeddings
	SAT Oracles
	MUS Extraction
	MaxSAT
	2QBF

	What Next in SAT-Based Problem Solving?

