CDCL SAT Solvers & SAT-Based Problem Solving

Joao Marques-Silva1,2 \& Mikolas Janota2

1University College Dublin, Ireland
2IST/INESC-ID, Lisbon, Portugal

SAT/SMT Summer School 2013
Aalto University, Espoo, Finland
The Success of SAT

- Well-known NP-complete decision problem

[C71]
The Success of SAT

- Well-known NP-complete decision problem
- In practice, SAT is a success story of Computer Science
 - Hundreds (even more?) of practical applications
The Success of SAT

- Well-known NP-complete decision problem
- In practice, SAT is a success story of Computer Science
 - Hundreds (even more?) of practical applications
SAT Solver Improvement

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

CPU Time (in seconds)
Number of problems solved

- Limmat (2002)
- Zchaff (2002)
- Berkmin (2002)
- Forklift (2003)
- Siege (2003)
- SatELite (2005)
- Minisat 2 (2006)
- Picosat (2007)
- Rsat (2007)
- Minisat 2.1 (2008)
- Precosat (2009)
- Glucose (2009)
- Clasp (2009)
- Cryptominisat (2010)
- Lingeling (2010)
- Minisat 2.2 (2010)
- Glucose 2 (2011)
- Glueminisat (2011)
- Contrasat (2011)
- Lingeling 587f (2011)
Overview modern SAT solvers
 – Conflict-Driven Clause Learning (CDCL) SAT solvers
 ▶ Note: Overview for non-experts
This Lecture

- Overview modern SAT solvers
 - **Conflict-Driven Clause Learning (CDCL)** SAT solvers
 - Note: Overview for non-experts

- SAT-based problem solving in practice
 - How to do it?
This Lecture

- Overview modern SAT solvers
 - **Conflict-Driven Clause Learning (CDCL)** SAT solvers
 - *Note:* Overview for non-experts

- SAT-based problem solving in practice
 - How to do it?
 - **Encode** problems to SAT
 - **Embed** SAT solvers in applications
 - Iteratively use a SAT solver (i.e. as an **NP oracle**
Part I

CDCL SAT Solvers
Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?
Outline

Basic Definitions

- DPLL Solvers
- CDCL Solvers

What Next in CDCL Solvers?
Preliminaries

- **Variables**: $w, x, y, z, a, b, c, \ldots$
- **Literals**: $w, \bar{x}, \bar{y}, a, \ldots$, but also $\neg w, \neg y, \ldots$
- **Clauses**: disjunction of literals or set of literals
- **Formula**: conjunction of clauses or set of clauses
- **Model (satisfying assignment)**: partial/total mapping from variables to $\{0, 1\}$
- **Formula can be** SAT/UNSAT

Example:

$$F \equiv (r) \land (\bar{r} \lor s) \land (\bar{w} \lor a) \land (\bar{x} \lor b) \land (\bar{y} \lor \bar{z} \lor c) \land (\bar{b} \lor \bar{c} \lor d)$$

Example models:

- $\{r, s, a, b, c, d\}$
- $\{r, s, \bar{x}, y, \bar{w}, z, \bar{a}, b, c, d\}$
Preliminaries

- **Variables**: $w, x, y, z, a, b, c, \ldots$
- **Literals**: $w, \neg x, \neg y, a, \ldots$, but also $\neg w, \neg y, \ldots$
- **Clauses**: disjunction of literals or set of literals
- **Formula**: conjunction of clauses or set of clauses
- **Model** (satisfying assignment): partial/total mapping from variables to $\{0, 1\}$
- **Formula can be** SAT/UNSAT
- **Example**:

$$F \triangleq (r) \land (\neg r \lor s) \land (\neg w \lor a) \land (\neg x \lor b) \land (\neg y \lor \neg z \lor c) \land (\neg b \lor \neg c \lor d)$$

- **Example models**:
 - $\{r, s, a, b, c, d\}$
 - $\{r, s, \bar{x}, y, \bar{w}, z, \bar{a}, b, c, d\}$
Resolution

- **Resolution rule:**

\[
\frac{(\alpha \lor x) \quad (\beta \lor \neg x)}{(\alpha \lor \beta)}
\]

- Complete proof system for propositional logic
Resolution

- Resolution rule:

\[
\frac{(\alpha \lor x) \land (\beta \lor \bar{x})}{\alpha \lor \beta}
\]

- Complete proof system for propositional logic

- Extensively used with (CDCL) SAT solvers

\[
\begin{align*}
(x \lor a) & \quad (\bar{x} \lor a) & \quad (\bar{y} \lor \bar{a}) & \quad (y \lor \bar{a}) \\
(a) & \quad (\bar{a}) & \\
\bot & \\
\end{align*}
\]
Resolution

- **Resolution rule:**
 \[\frac{(\alpha \lor x) \quad (\beta \lor \bar{x})}{(\alpha \lor \beta)} \]

 - Complete proof system for propositional logic
 \[
 \begin{array}{cccc}
 (x \lor a) & (\bar{x} \lor a) & (\bar{y} \lor \bar{a}) & (y \lor \bar{a}) \\
 \downarrow & \downarrow & \downarrow & \downarrow \\
 (a) & (a) & (\bar{a}) & (\bar{a}) \\
 \downarrow & \downarrow & \downarrow & \downarrow \\
 \bot & \bot & \bot & \bot \\
 \end{array}
 \]

 - Extensively used with (CDCL) SAT solvers

- **Self-subsuming resolution** (with $\alpha' \subseteq \alpha$):
 \[\frac{(\alpha \lor x) \quad (\alpha' \lor \bar{x})}{(\alpha)} \]

 - (α) subsumes $(\alpha \lor x)$
Unit Propagation

\[\mathcal{F} = (r) \land (\bar{r} \lor s) \land \\
(\bar{w} \lor a) \land (\bar{x} \lor \bar{a} \lor b) \\
(\bar{y} \lor \bar{z} \lor c) \land (\bar{b} \lor \bar{c} \lor d) \]
Unit Propagation

\[\overline{F} = \ (r) \land (\overline{r} \lor s) \land \\
(\overline{w} \lor a) \land (\overline{x} \lor \overline{a} \lor b) \\
(\overline{y} \lor \overline{z} \lor c) \land (\overline{b} \lor \overline{c} \lor d) \]

- Decisions / Variable Branchings:
 \(w = 1, x = 1, y = 1, z = 1\)
Unit Propagation

\[\mathcal{F} = (r) \land (\bar{r} \lor s) \land \\
(\bar{w} \lor a) \land (\bar{x} \lor \bar{a} \lor b) \land \\
(\bar{y} \lor \bar{z} \lor c) \land (\bar{b} \lor \bar{c} \lor d) \]

- Decisions / Variable Branchings:
 \[w = 1, \ x = 1, \ y = 1, \ z = 1 \]

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\emptyset</td>
<td>(r \rightarrow s)</td>
</tr>
<tr>
<td>1</td>
<td>(w)</td>
<td>(a)</td>
</tr>
<tr>
<td>2</td>
<td>(x)</td>
<td>(b)</td>
</tr>
<tr>
<td>3</td>
<td>(y)</td>
<td>(c \rightarrow d)</td>
</tr>
<tr>
<td>4</td>
<td>(z)</td>
<td>(c \rightarrow d)</td>
</tr>
</tbody>
</table>
Unit Propagation

\[\mathcal{F} = (r) \land (\overline{r} \lor s) \land (\overline{w} \lor a) \land (\overline{x} \lor \overline{a} \lor b) \land (\overline{y} \lor \overline{z} \lor c) \land (\overline{b} \lor \overline{c} \lor d) \]

- Decisions / Variable Branchings:
 \[w = 1, x = 1, y = 1, z = 1 \]

- Additional definitions:
 - Antecedent (or reason) of an implied assignment
 \[(\overline{b} \lor \overline{c} \lor d) \text{ for } d \]
 - Associate assignment with decision levels
 \[w = 1 \oplus 1, x = 1 \oplus 2, y = 1 \oplus 3, z = 1 \oplus 4 \]
 \[r = 1 \oplus 0, d = 1 \oplus 4, \ldots \]
Resolution Proofs

- Refutation of unsatisfiable formula by iterated resolution operations produces resolution proof.

- An example:
 \[F = (\neg c) \land (\neg b) \land (\neg a \lor c) \land (a \lor b) \land (a \lor \neg d) \land (\neg a \lor \neg d) \]

- Resolution proof:

 ![Resolution Proof Diagram]

 ![Resolution Proof Diagram](https://via.placeholder.com/150)

 ![Resolution Proof Diagram](https://via.placeholder.com/150)

- A modern SAT solver can generate resolution proofs using clauses learned by the solver.

[ZM03]
Unsatisfiable Cores & Proof Traces

- CNF formula:

\[\mathcal{F} = (\overline{c}) \land (\overline{b}) \land (\overline{a} \lor c) \land (a \lor b) \land (a \lor \overline{d}) \land (\overline{a} \lor \overline{d}) \]

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\emptyset</td>
<td>\overline{b} \rightarrow a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\overline{c} \rightarrow \bot</td>
</tr>
</tbody>
</table>

Implication graph with conflict
Unsatisfiable Cores & Proof Traces

- CNF formula:

\[\mathcal{F} = (\overline{c}) \land (\overline{b}) \land (\overline{a} \lor c) \land (a \lor b) \land (a \lor \overline{d}) \land (\overline{a} \lor \overline{d}) \]

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\emptyset</td>
<td>\overline{b} \rightarrow a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\overline{c} \rightarrow \bot</td>
</tr>
</tbody>
</table>

Proof trace \(\bot \): (\overline{a} \lor c) (a \lor b) (\overline{c}) (\overline{b})
Unsatisfiable Cores & Proof Traces

- CNF formula:

\[\mathcal{F} = (\bar{c}) \land (\bar{b}) \land (\bar{a} \lor c) \land (a \lor b) \land (a \lor \bar{d}) \land (\bar{a} \lor \bar{d}) \]

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ø</td>
<td>(\bar{b} \rightarrow a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\bar{c} \rightarrow \bot)</td>
</tr>
</tbody>
</table>

Resolution proof follows structure of conflicts
Unsatisfiable Cores & Proof Traces

- CNF formula:

\[\mathcal{F} = (\bar{c}) \land (\bar{b}) \land (\bar{a} \lor c) \land (a \lor b) \land (a \lor \bar{d}) \land (\bar{a} \lor \bar{d}) \]

Unsatisfiable subformula (core): \((\bar{c}), (\bar{b}), (\bar{a} \lor c), (a \lor b)\)
Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?
The DPLL Algorithm

- Unassigned variables?
 - Yes: Assign value to variable
 - No: Unit propagation

- Conflict?
 - Yes: Can undo decision?
 - Yes: Backtrack & flip variable
 - No: Unassignable
 - No: Satisfiable

- Optional: pure literal rule
The DPLL Algorithm

$$\mathcal{F} = (x \lor y) \land (a \lor b) \land (\bar{a} \lor b) \land (a \lor \bar{b}) \land (\bar{a} \lor \bar{b})$$

- Optional: pure literal rule
The DPLL Algorithm

Optional: pure literal rule
The DPLL Algorithm

- **Optional:** pure literal rule

$$\mathcal{F} = (x \lor y) \land (a \lor b) \land (\overline{a} \lor b) \land (a \lor \overline{b}) \land (\overline{a} \lor \overline{b})$$

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\emptyset)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(x)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(y)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(\overline{a})</td>
<td>(\overline{b})</td>
</tr>
</tbody>
</table>
The DPLL Algorithm

- Optional: pure literal rule

\[F = (x \lor y) \land (a \lor b) \land (\overline{a} \lor b) \land (a \lor \overline{b}) \land (\overline{a} \lor \overline{b}) \]

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(x)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(\overline{y})</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(a)</td>
<td>(b) (\perp)</td>
</tr>
</tbody>
</table>

- Unassigned variables?
 - Y: Assign value to variable
 - N: Unit propagation

- Conflict?
 - Y: Satisfiable

- Can undo decision?
 - Y: Backtrack & flip variable
 - N: Unsatisfiable
The DPLL Algorithm

- Optional: pure literal rule

$$F = (x \lor y) \land (a \lor b) \land (\bar{a} \lor b) \land (a \lor \bar{b}) \land (\bar{a} \lor \bar{b})$$

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(\bar{a})</td>
<td>(\bar{b})</td>
</tr>
</tbody>
</table>
The DPLL Algorithm

- Optional: pure literal rule

\[\mathcal{F} = (x \lor y) \land (a \lor b) \land (\overline{a} \lor \overline{b}) \land (a \lor \overline{b}) \land (\overline{a} \lor \overline{b}) \]

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>\overline{x}</td>
<td>y</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

Level Dec. Unit Prop.
The DPLL Algorithm

- Optional: pure literal rule

\[
\mathcal{F} = (x \lor y) \land (a \lor b) \land (\bar{a} \lor b) \land (a \lor \bar{b}) \land (\bar{a} \lor \bar{b})
\]
Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?
What is a CDCL SAT Solver?

- Extend **DPLL SAT** solver with:
 - Clause learning & non-chronological backtracking
 - Exploit UIPs
 - Minimize learned clauses
 - Opportunistically delete clauses
 - Search restarts
 - Lazy data structures
 - Watched literals
 - Conflict-guided branching
 - Lightweight branching heuristics
 - Phase saving
 - ...

[DP60,DLL62]
[MSS96,BS97,Z97]
[MSS96,SSS12]
[SB09,VG09]
[MSS96,MSS99,GN02]
[GSK98,BMS00,H07,B08]
[MMZZM01]
[MMZZM01]
[PD07]
How Significant are CDCL SAT Solvers?

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

- Limmat (2002)
- Zchaff (2002)
- Berkmin (2002)
- Forklift (2003)
- Siege (2003)
- SatELite (2005)
- Minisat 2 (2006)
- Picosat (2007)
- Rsat (2007)
- Minisat 2.1 (2008)
- Precosat (2009)
- Glucose (2009)
- Clasp (2009)
- Cryptominisat (2010)
- Lingeling (2010)
- Minisat 2.2 (2010)
- Glucose 2 (2011)
- Glueminisat (2011)
- Contrasat (2011)
- Lingeling 587f (2011)

CPU Time (in seconds)

Number of problems solved
Outline

Basic Definitions

DPLL Solvers

CDCL Solvers
 Clause Learning, UIPs & Minimization
 Search Restarts & Lazy Data Structures

What Next in CDCL Solvers?
Clause Learning

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>z</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b</td>
</tr>
</tbody>
</table>

- Analyze conflict
 - Reasons: x and z
 - Decision variable & literals assigned at lower decision levels
- Create new clause: \(\neg x \lor \neg z \)
- Can relate clause learning with resolution
 - Learned clauses result from selected resolution operations
Clause Learning

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>z</td>
<td>a</td>
</tr>
</tbody>
</table>

- Analyze conflict
Clause Learning

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(x)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(y)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(z)</td>
<td>(a) (\perp)</td>
</tr>
</tbody>
</table>

- **Analyze conflict**
 - Reasons: \(x\) and \(z\)
 - Decision variable & literals assigned at lower decision levels
Clause Learning

- Analyze conflict
 - Reasons: x and z
 - Decision variable & literals assigned at lower decision levels
 - Create **new** clause: $(\overline{x} \lor \overline{z})$
Clause Learning

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>z</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b</td>
</tr>
</tbody>
</table>

- Analyze conflict
 - Reasons: x and z
 - Decision variable & literals assigned at lower decision levels
 - Create **new** clause: $(\bar{x} \lor \bar{z})$
- Can relate clause learning with resolution

\[
(\bar{a} \lor \bar{b}) (\bar{z} \lor b) (\bar{x} \lor \bar{z} \lor a)
\]
Clause Learning

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(x)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(y)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(z)</td>
<td>(a)</td>
</tr>
</tbody>
</table>

• Analyze conflict
 - Reasons: \(x\) and \(z\)
 - Decision variable & literals assigned at lower decision levels
 - Create **new** clause: \((\overline{x} \lor \overline{z})\)

• Can relate **clause learning** with resolution
Clause Learning

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>z</td>
<td>a</td>
</tr>
</tbody>
</table>

- Analyze conflict
 - Reasons: x and z
 - Decision variable & literals assigned at lower decision levels
 - Create new clause: \((\overline{x} \lor \overline{z})\)

- Can relate clause learning with resolution
Clause Learning

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>z</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b</td>
</tr>
</tbody>
</table>

- Analyze conflict
 - Reasons: x and z
 - Decision variable & literals assigned at lower decision levels
 - Create **new** clause: $(\bar{x} \lor \bar{z})$

- Can relate clause learning with resolution
 - Learned clauses result from **selected** resolution operations
Clause Learning – After Bracktracking

Level	Dec.	Unit Prop.
0 | ∅ | 0
1 | x | 1
2 | y | 2
3 | z | 3
 | a | 4
 | b | 5

Clause \((\neg x \lor \neg z)\) is asserting at decision level 1.

Learned clauses are always asserting [MSS96, MSS99].

Backtracking differs from plain DPLL:– Always backtrack after a conflict [MMZZM01].
Clause Learning – After Bracktracking

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>z</td>
<td></td>
</tr>
</tbody>
</table>

- Clause $(\bar{x} \lor \bar{z})$ is asserting at decision level 1
Clause Learning – After Backtracking

• Clause \((\overline{x} \lor \overline{z})\) is asserting at decision level 1
Clause Learning – After Bracktracking

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>z</td>
</tr>
</tbody>
</table>

- Clause $(\overline{x} \lor \overline{z})$ is **asserting** at decision level 1
- Learned clauses are **always** asserting
- Backtracking differs from plain DPLL:
 - Always bactrack after a conflict

[MSS96,MSS99] [MMZZM01]
Unique Implication Points (UIPs)

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>z</td>
<td>a</td>
</tr>
</tbody>
</table>

Graph:
- w connects to x.
- y connects to a.
- z connects to a.
- a connects to c.
- b connects to c.
- c connects to \bot.
Unique Implication Points (UIPs)

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(w)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(x)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(y)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(z \rightarrow a \rightarrow c)</td>
<td>(z \rightarrow b \rightarrow \bot)</td>
</tr>
</tbody>
</table>

- Learn clause \((\bar{w} \lor \bar{x} \lor \bar{y} \lor \bar{z})\)

\[\begin{align*}
(\bar{b} \lor c) & \quad (\bar{w} \lor c) & \quad (\bar{x} \lor \bar{a} \lor b) & \quad (\bar{y} \lor \bar{z} \lor a) \\
(\bar{w} \lor \bar{b}) & & \quad (\bar{w} \lor \bar{x} \lor \bar{a}) & \quad (\bar{w} \lor \bar{x} \lor \bar{y} \lor \bar{z}) \\
(\bar{w} \lor \bar{x} \lor \bar{a}) & & & \\
(\bar{w} \lor \bar{x} \lor \bar{y} \lor \bar{z}) & & &
\end{align*}\]
Unique Implication Points (UIPs)

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
<th>Clause</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td>w</td>
<td>$(\bar{b} \lor \bar{c})$</td>
</tr>
<tr>
<td>1</td>
<td>w</td>
<td>w</td>
<td>$(\bar{w} \lor c)$</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>x</td>
<td>$(\bar{x} \lor \bar{a} \lor b)$</td>
</tr>
<tr>
<td>3</td>
<td>y</td>
<td>y</td>
<td>$(\bar{y} \lor \bar{z} \lor a)$</td>
</tr>
<tr>
<td>4</td>
<td>z</td>
<td>a</td>
<td>$(\bar{w} \lor \bar{x} \lor \bar{y} \lor \bar{z})$</td>
</tr>
</tbody>
</table>

- Learn clause $(\bar{w} \lor \bar{x} \lor \bar{y} \lor \bar{z})$
- But a is an UIP
Unique Implication Points (UIPs)

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>£</td>
<td>Ø</td>
</tr>
<tr>
<td>1</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>z</td>
<td>a</td>
</tr>
</tbody>
</table>

- **Learn clause** \((\overline{w} \lor \overline{x} \lor \overline{y} \lor \overline{z})\)
- **But** \(a\) **is an UIP**
- **Learn clause** \((\overline{w} \lor \overline{x} \lor \overline{a})\)
Multiple UIPs

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>z</td>
<td></td>
</tr>
</tbody>
</table>

First UIP:
- Learn clause \(\overline{w} \lor \overline{y} \lor \overline{a} \)

But there can be more than 1 UIP

Second UIP:
- Learn clause \(\overline{x} \lor \overline{z} \lor a \)

In practice smaller clauses more effective

- Compare with \(\overline{w} \lor \overline{x} \lor \overline{y} \lor \overline{z} \)

Multiple UIPs proposed in GRASP \[MSS96\]
- First UIP learning proposed in Chaff \[MMZZM01\]

Not used in recent state of the art CDCL SAT solvers

Recent results show it can be beneficial on current instances \[SSS12\]
Multiple UIPs

- First UIP:
 - Learn clause \((\bar{w} \lor \bar{y} \lor \bar{a})\)

- Multiple UIPs proposed in GRASP [MSS96]
 - First UIP learning proposed in Chaff [MMZZM01]
 - Not used in recent state of the art CDCL SAT solvers
 - Recent results show it can be beneficial on current instances [SSS12]
Multiple UIPs

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>z</td>
<td>r</td>
</tr>
</tbody>
</table>

- **First UIP:**
 - Learn clause $(\bar{w} \lor \bar{y} \lor \bar{a})$

- But there can be more than 1 UIP

- Multiple UIPs proposed in GRASP [MSS96]
 - First UIP learning proposed in Chaff [MMZZM01]
- Not used in recent state of the art CDCL SAT solvers
- Recent results show it can be beneficial on current instances [SSS12]
Multiple UIPs

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>z</td>
<td>r s a c b ⊥</td>
</tr>
</tbody>
</table>

- **First UIP:**
 - Learn clause $(\bar{w} \lor \bar{y} \lor \bar{a})$
- But there can be more than 1 UIP
- **Second UIP:**
 - Learn clause $(\bar{x} \lor \bar{z} \lor a)$

Multiple UIPs proposed in GRASP [MSS96]
First UIP learning proposed in Chaff [MMZZM01]
Not used in recent state of the art CDCL SAT solvers
Recent results show it can be beneficial on current instances [SSS12]
Multiple UIPs

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>z</td>
<td>r, a, c, s</td>
</tr>
</tbody>
</table>

- **First UIP:**
 - Learn clause \((\bar{w} \lor \bar{y} \lor \bar{a})\)
- **Second UIP:**
 - Learn clause \((\bar{x} \lor \bar{z} \lor a)\)
- In practice smaller clauses more effective
 - Compare with \((\bar{w} \lor \bar{x} \lor \bar{y} \lor \bar{z})\)

Multiple UIPs proposed in GRASP \([MSS96]\)

- First UIP learning proposed in Chaff \([MMZZM01]\)
- Not used in recent state of the art CDCL SAT solvers
- Recent results show it can be beneficial on current instances \([SSS12]\)
Multiple UIPs

- **First UIP:**
 - Learn clause \((\overline{w} \lor \overline{y} \lor \overline{a})\)
- But there can be more than 1 UIP
- **Second UIP:**
 - Learn clause \((\overline{x} \lor \overline{z} \lor a)\)
 - In practice smaller clauses more effective
 - Compare with \((\overline{w} \lor \overline{x} \lor \overline{y} \lor \overline{z})\)

- Multiple UIPs proposed in GRASP
 - First UIP learning proposed in Chaff
- Not used in recent state of the art CDCL SAT solvers

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>w</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>z</td>
<td>r \rightarrow a \rightarrow c</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>b \rightarrow \bot</td>
</tr>
</tbody>
</table>
Multiple UIPs

- **First UIP:**
 - Learn clause \((\bar{w} \lor \bar{y} \lor \bar{a})\)
- But there can be more than 1 UIP
- **Second UIP:**
 - Learn clause \((\bar{x} \lor \bar{z} \lor a)\)
 - In practice smaller clauses more effective
 - Compare with \((\bar{w} \lor \bar{x} \lor \bar{y} \lor \bar{z})\)

- Multiple UIPs proposed in GRASP
 - First UIP learning proposed in Chaff
- Not used in recent state of the art CDCL SAT solvers
- Recent results show it can be beneficial on current instances

[MSS96] [MMZZM01] [SSS12]
Clause Minimization I

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>b</td>
</tr>
<tr>
<td>2</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>z</td>
<td>$c \rightarrow \bot$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a</td>
</tr>
</tbody>
</table>
Clause Minimization I

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>b</td>
</tr>
<tr>
<td>2</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>z</td>
<td>c</td>
</tr>
</tbody>
</table>

- Learn clause \((\bar{x} \lor \bar{y} \lor \bar{z} \lor \bar{b})\)

\[(\bar{a} \lor \bar{c}) \quad (\bar{z} \lor \bar{b} \lor c) \quad (\bar{x} \lor \bar{y} \lor \bar{z} \lor a)\]

\[(\bar{z} \lor \bar{b} \lor \bar{a}) \quad (\bar{x} \lor \bar{y} \lor \bar{z} \lor \bar{b})\]

\[
\begin{align*}
\text{(1)} & \quad \text{(2)} \\
\text{(2)} & \quad \text{(3)} \\
\text{(3)} & \quad \text{(4)} \\
\end{align*}
\]
Clause Minimization I

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>b</td>
</tr>
<tr>
<td>2</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>z</td>
<td>c</td>
</tr>
</tbody>
</table>

- Learn clause $(\overline{x} \lor \overline{y} \lor \overline{z} \lor \overline{b})$
- Apply self-subsuming resolution (i.e. local minimization)

[SB09]
Clause Minimization I

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>b</td>
</tr>
<tr>
<td>2</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>z</td>
<td>c</td>
</tr>
</tbody>
</table>

- Learn clause $(\bar{x} \lor \bar{y} \lor \bar{z} \lor \bar{b})$
- Apply self-subsuming resolution (i.e. local minimization)
Clause Minimization I

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>b</td>
</tr>
<tr>
<td>2</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>z</td>
<td>c</td>
</tr>
</tbody>
</table>

- Learn clause \((\bar{x} \lor \bar{y} \lor \bar{z} \lor \bar{b})\)
- Apply self-subsuming resolution (i.e. local minimization)
- Learn clause \((\bar{x} \lor \bar{y} \lor \bar{z})\)
Clause Minimization II

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>w</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>e</td>
</tr>
</tbody>
</table>

Diagram:

- **Level 0:** \emptyset
- **Level 1:**
 - $w \rightarrow a \rightarrow c$
 - b
- **Level 2:**
 - $x \rightarrow e$
 - $d \rightarrow \bot$

Notes:
- Cannot apply self-subsuming resolution.
- Resolving with reason of c yields $(\overline{w} \lor \overline{x} \lor \overline{a} \lor \overline{b})$.
- Can apply recursive minimization.
- Learn clause $(\overline{w} \lor \overline{x})$.
- Marked nodes: literals in learned clause.
- Trace back from c until marked nodes or new nodes. Learn clause if only marked nodes visited.

[SB09]
Clause Minimization II

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>w</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>⊥</td>
</tr>
</tbody>
</table>

- Learn clause \((\overline{w} \lor \overline{x} \lor \overline{c})\)
Clause Minimization II

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>w</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\perp</td>
</tr>
</tbody>
</table>

- Learn clause $(\bar{w} \vee \bar{x} \vee \bar{c})$
- **Cannot** apply self-subsuming resolution
 - Resolving with reason of c yields $(\bar{w} \vee \bar{x} \vee \bar{a} \vee \bar{b})$
Clause Minimization II

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>w</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>e</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d</td>
</tr>
</tbody>
</table>

- Learn clause \((\overline{w} \lor \overline{x} \lor \overline{c})\)
- **Cannot** apply self-subsuming resolution
 - Resolving with reason of \(c\) yields \((\overline{w} \lor \overline{x} \lor \overline{a} \lor \overline{b})\)
- Can apply recursive minimization
Clause Minimization II

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∅</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>w</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>⊥</td>
</tr>
</tbody>
</table>

- **Learn clause** \((\overline{w} \lor \overline{x} \lor \overline{c})\)
- **Cannot** apply self-subsuming resolution
 - Resolving with reason of \(c\) yields \((\overline{w} \lor \overline{x} \lor \overline{a} \lor \overline{b})\)
- **Can apply** recursive minimization

- **Marked nodes**: literals in learned clause

[SB09]
• **Learn clause** \((\overline{w} \lor \overline{x} \lor \overline{c})\)

• **Cannot** apply self-subsuming resolution
 – Resolving with reason of \(c\) yields \((\overline{w} \lor \overline{x} \lor \overline{a} \lor \overline{b})\)

• **Can apply** recursive minimization

• **Marked nodes**: literals in learned clause

• **Trace back from** \(c\) until marked nodes or new nodes
 – Learn clause if only marked nodes visited

[SB09]
Clause Minimization II

<table>
<thead>
<tr>
<th>Level</th>
<th>Dec.</th>
<th>Unit Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\emptyset</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>w</td>
<td>a, c</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>e, d, \bot</td>
</tr>
</tbody>
</table>

- **Learn clause** $(\overline{w} \lor \overline{x} \lor \overline{c})$
- **Cannot** apply self-subsuming resolution
 - Resolving with reason of c yields $(\overline{w} \lor \overline{x} \lor \overline{a} \lor \overline{b})$
- **Can apply** recursive minimization
- **Learn clause** $(\overline{w} \lor \overline{x})$

- **Marked nodes**: literals in learned clause
- Trace back from c until **marked** nodes or **new** nodes
 - Learn clause if only **marked** nodes visited
Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

Clause Learning, UIPs & Minimization

Search Restarts & Lazy Data Structures

What Next in CDCL Solvers?
Search Restarts I

- Heavy-tail behavior:

 - 10000 runs, branching randomization on industrial instance
 - Use rapid randomized restarts (search restarts)

[GSK98]
Search Restarts II

- Restart search after a number of conflicts

- Increase cutoff after each restart
 - Guarantees completeness
 - Different policies exist (see refs)

- Works for SAT & UNSAT instances. Why?
 - Learned clauses effective after restart(s)
• Restart search after a number of conflicts
• Increase `cutoff` after each restart
 – Guarantees completeness
 – Different policies exist (see refs)

Works for SAT & UNSAT instances. Why?

- Learned clauses effective after restart(s)
• Restart search after a number of conflicts
• Increase cutoff after each restart
 – Guarantees completeness
 – Different policies exist (see refs)
• Works for SAT & UNSAT instances. Why?
Search Restarts II

- Restart search after a number of conflicts
- Increase cutoff after each restart
 - Guarantees completeness
 - Different policies exist (see refs)
- Works for SAT & UNSAT instances. Why?
- Learned clauses effective after restart(s)
• Each literal should access clauses containing
 – Why?
• Each literal \(l \) should access clauses containing \(l \)
 – Why? Unit propagation
• Each literal l should access clauses containing l
 – Why? Unit propagation

• Clause with k literals results in k references, from literals to the clause
Data Structures Basics

• Each literal l should access clauses containing l
 – Why? Unit propagation

• Clause with k literals results in k references, from literals to the clause

• Number of clause references equals number of literals, L
Data Structures Basics

- Each literal \(l \) should access clauses containing \(l \)
 - Why? Unit propagation

- Clause with \(k \) literals results in \(k \) references, from literals to the clause

- Number of clause references equals number of literals, \(L \)
 - Clause learning can generate large clauses
 - Worst-case size: \(O(n) \)

Worst-case number of literals: \(O(mn) \)
In practice, Unit propagation slowdown worse than linear as clauses are learned!

Clause learning to be effective requires a more efficient representation:
- Watched literals are one example of lazy data structures
- But there are others
Each literal should access clauses containing it
 - Why? Unit propagation

Clause with literals results in references, from literals to the clause

Number of clause references equals number of literals, \(L \)
 - Clause learning can generate large clauses
 - Worst-case size: \(O(n) \)
 - Worst-case number of literals: \(O(mn) \)
Data Structures Basics

- Each literal l should access clauses containing l
 - Why? Unit propagation

- Clause with k literals results in k references, from literals to the clause

- Number of clause references equals number of literals, L
 - Clause learning can generate large clauses
 - Worst-case size: $O(n)$
 - Worst-case number of literals: $O(mn)$
 - In practice,

 Unit propagation slow-down worse than linear as clauses are learned!

- Worst-case number of literals: $O(mn)$
Data Structures Basics

- Each literal l should access clauses containing l
 - Why? Unit propagation

- Clause with k literals results in k references, from literals to the clause

- Number of clause references equals number of literals, L
 - Clause learning can generate large clauses
 - Worst-case size: $O(n)$
 - Worst-case number of literals: $O(mn)$
 - In practice, Unit propagation slow-down worse than linear as clauses are learned!

- Clause learning to be effective requires a more efficient representation:
Data Structures Basics

• Each literal \(l \) should access clauses containing \(l \)
 – Why? Unit propagation

• Clause with \(k \) literals results in \(k \) references, from literals to the clause

• Number of clause references equals number of literals, \(L \)
 – Clause learning can generate large clauses
 ▶ Worst-case size: \(O(n) \)
 – Worst-case number of literals: \(O(mn) \)
 – In practice, Unit propagation slow-down worse than linear as clauses are learned!

• Clause learning to be effective requires a more efficient representation: Watched Literals
• Each literal l should access clauses containing l
 – Why? Unit propagation

• Clause with k literals results in k references, from literals to the clause

• Number of clause references equals number of literals, L
 – Clause learning can generate large clauses
 ▶ Worst-case size: $O(n)$
 – Worst-case number of literals: $O(mn)$
 – In practice,
 Unit propagation slow-down worse than linear as clauses are learned!

• Clause learning to be effective requires a more efficient representation: Watched Literals
 – Watched literals are one example of lazy data structures
 ▶ But there are others
Watched Literals

- Important states of a clause
Watched Literals

- Important states of a clause
- Associate 2 references with each clause

![Diagram showing states of a clause]

- unresolved
- unresolved
- unit
- satisfied

after backtracking to level 4
Watched Literals

- Important states of a clause
- Associate 2 references with each clause
- Deciding unit requires traversing all literals

[MMZZM01]
Watched Literals

• Important states of a clause
• Associate 2 references with each clause
• Deciding unit requires traversing all literals
• References **unchanged** when backtracking
• **Lightweight branching**
 - Use conflict to bias variables to branch on, associate score with each variable
 - Prefer recent bias by regularly decreasing variable scores

[MMZZM01]

• ** Clause deletion policies**
 - Not practical to keep all learned clauses
 - Delete less used clauses

[MSS96, GN02, ES03]

• **Proven recent techniques**
 - Phase saving
 - [PD07]
 - Literal blocks distance
 - [AS09]
Additional Key Techniques

- **Lightweight branching**
 - Use conflict to bias variables to branch on, associate score with each variable
 - Prefer recent bias by regularly decreasing variable scores

- **Clause deletion policies**
 - Not practical to keep all learned clauses
 - Delete less used clauses
Additional Key Techniques

- **Lightweight branching**
 - Use conflict to bias variables to branch on, associate score with each variable
 - Prefer recent bias by regularly decreasing variable scores

- **Clause deletion policies**
 - Not practical to keep all learned clauses
 - Delete less used clauses

- **Proven recent techniques:**
 - Phase saving
 - Literal blocks distance
Outline

Basic Definitions

DPLL Solvers

CDCL Solvers

What Next in CDCL Solvers?
CDCL – A Glimpse of the Future

• **Clause learning techniques**
 - Clause learning is the key technique in CDCL SAT solvers
 - Many recent papers propose improvements to the basic clause learning approach

• **Preprocessing & inprocessing**
 - Many recent papers
 - Essential in some applications

• **Application-driven improvements**
 - Incremental SAT
 - Handling of assumptions due to MUS extractors
Part II

SAT-Based Problem Solving
How to Solve Problems with SAT?

- **CNF encodings**
 - Represent problem as instance of SAT
 - E.g. Eager SMT, Pseudo-Boolean constraints, etc.

- **Embedding of SAT solvers**
 - SAT solver used to implement domain specific algorithm
 - White-box integration
 - E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

- **SAT solvers as oracles**
 - Algorithm invokes SAT solver as an NP oracle
 - Black-box integration
 - E.g. MaxSAT, MUSes, (2)QBF, etc.

Note:
- CNF encodings most often used with either black-box or white-box approaches
- SAT techniques adapted in many other domains: QBF, ASP, ILP, CSP, ...
How to Solve Problems with SAT?

• **CNF encodings**
 - Represent problem as instance of SAT
 - E.g. Eager SMT, Pseudo-Boolean constraints, etc.

• **Embedding of SAT solvers**
 - SAT solver used to implement domain specific algorithm
 - White-box integration
 - E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

• **Note**: CNF encodings most often used with either black-box or white-box approaches
 SAT techniques adapted in many other domains: QBF, ASP, ILP, CSP, ...
How to Solve Problems with SAT?

- **CNF encodings**
 - Represent problem as instance of SAT
 - E.g. Eager SMT, Pseudo-Boolean constraints, etc.

- **Embedding of SAT solvers**
 - SAT solver used to implement domain specific algorithm
 - **White-box** integration
 - E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

- **SAT solvers as oracles**
 - Algorithm invokes SAT solver as an NP oracle
 - **Black-box** integration
 - E.g. MaxSAT, MUSes, (2)QBF, etc.
How to Solve Problems with SAT?

- **CNF encodings**
 - Represent problem as instance of SAT
 - E.g. Eager SMT, Pseudo-Boolean constraints, etc.

- **Embedding of SAT solvers**
 - SAT solver used to implement domain specific algorithm
 - White-box integration
 - E.g. Lazy SMT, Pseudo-Boolean constraints/optimization, etc.

- **SAT solvers as oracles**
 - Algorithm invokes SAT solver as an NP oracle
 - Black-box integration
 - E.g. MaxSAT, MUSes, (2)QBF, etc.

- **Note:**
 - CNF encodings most often used with either black-box or white-box approaches
 - SAT techniques adapted in many other domains: QBF, ASP, ILP, CSP, ...
Some apps associated with more than one concept: planning, BMC, lazy clause generation, etc.
Examples of SAT-Based Problem Solving I

- **Function problems in** $\text{FP}^{\text{NP}}[\log n]$
 - Unweighted Maximum Satisfiability (MaxSAT)
 - Minimal Correction Subsets (MCSes)
 - Minimal models
 - ...

- **Function problems in** FP^{NP}
 - Weighted Maximum Satisfiability (MaxSAT)
 - Minimal Unsatisfiable Subformulas (MUSes)
 - Minimal Equivalent Subformulas (MESes)
 - Prime implicates
 - ...

- **Enumeration problems**
 - Models
 - MUSes
 - MCSes
 - MaxSAT
 - ...

Examples of SAT-Based Problem Solving II

• Decision problems in Σ_2^P
 – 2QBF
 – ...

• Function problems in $FP_2^\Sigma^P$
 – (Weighted) Quantified MaxSAT ($Q\text{MaxSAT}$) [IJMS13]
 – Smallest MUS ($SMUS$) [IJMS13]
 – ...

• Decision problems in PSPACE
 – QBF
 – ...

• ...

Outline

CNF Encodings

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?
Outline

CNF Encodings

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?
What to encode?

- **Boolean formulas**
 - Tseitin's encoding
 - Plaisted\&Greenbaum's encoding
 - ...
- **Cardinality constraints**
- **Pseudo-Boolean (PB) constraints**
- Can also translate to SAT:
 - Constraint Satisfaction Problems (CSPs)
 - Answer Set Programming (ASP)
 - Model Finding
 - ...

Key issues:

- **Encoding size**
- **Arc-consistency?**
Outline

CNF Encodings
- Boolean Formulas
 - Cardinality Constraints
 - Pseudo-Boolean Constraints
 - Encoding CSPs

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?
Representing Boolean Formulas / Circuits I

- Satisfiability problems can be defined on Boolean circuits/formulas
- Can represent circuits/formulas as CNF formulas
 - For each (simple) gate, CNF formula encodes the consistent assignments to the gate’s inputs and output
 - Given $z = \text{OP}(x, y)$, represent in CNF $z \iff \text{OP}(x, y)$
 - CNF formula for the circuit is the conjunction of CNF formula for each gate

$$F_c = (a \lor c) \land (b \lor c) \land (\bar{a} \lor \bar{b} \lor \bar{c})$$

$$F_t = (\bar{r} \lor t) \land (\bar{s} \lor t) \land (r \lor s \lor \bar{t})$$
Representing Boolean Formulas / Circuits II

\[F_c = (a \lor c) \land (b \lor c) \land (\overline{\bar{a}} \lor \overline{\bar{b}} \lor \overline{\bar{c}}) \]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>(F_c(a,b,c))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
• CNF formula for the circuit is the conjunction of the CNF formula for each gate
 – Can specify objectives with additional clauses

\[
\mathcal{F} = (a \lor x) \land (b \lor x) \land (\bar{a} \lor \bar{b} \lor \bar{x}) \land \\
(x \lor \bar{y}) \land (c \lor \bar{y}) \land (\bar{x} \lor \bar{c} \lor y) \land \\
(y \lor z) \land (\bar{d} \lor z) \land (y \lor d \lor \bar{z}) \land (z)
\]
• CNF formula for the circuit is the conjunction of the CNF formula for each gate
 - Can specify objectives with additional clauses

\[
\mathcal{F} = (a \lor x) \land (b \lor x) \land (\bar{a} \lor \bar{b} \lor \bar{x}) \land \\
(x \lor \bar{y}) \land (c \lor \bar{y}) \land (\bar{x} \lor \bar{c} \lor y) \land \\
(\bar{y} \lor z) \land (\bar{d} \lor z) \land (y \lor d \lor \bar{z}) \land (z)
\]

• Note: \(z = d \lor (c \land (\neg(a \land b))) \)
 - No distinction between Boolean circuits and formulas
Outline

CNF Encodings
- Boolean Formulas
 - Cardinality Constraints
- Pseudo-Boolean Constraints
- Encoding CSPs

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?
Cardinality Constraints

• How to handle cardinality constraints, \(\sum_{j=1}^{n} x_j \leq k \)?
 - How to handle AtMost1 constraints, \(\sum_{j=1}^{n} x_j \leq 1 \)?
 - General form: \(\sum_{j=1}^{n} x_j \preceq k \), with \(\preceq \in \{<, \leq, =, \geq, >\} \)

• Solution #1:
 - Use PB solver
 - Difficult to keep up with advances in SAT technology
 - For SAT/UNSAT, best solvers already encode to CNF
 - E.g. Minisat+, but also QMaxSat, MSUnCore, (W)PM2
Cardinality Constraints

- How to handle cardinality constraints, $\sum_{j=1}^{n} x_j \leq k$?
 - How to handle AtMost1 constraints, $\sum_{j=1}^{n} x_j \leq 1$?
 - General form: $\sum_{j=1}^{n} x_j \triangledown k$, with $\triangledown \in \{<, \leq, =, \geq, >\}$

- **Solution #1:**
 - Use PB solver
 - Difficult to keep up with advances in SAT technology
 - For SAT/UNSAT, best solvers already encode to CNF
 - E.g. Minisat+, but also QMaxSat, MSUnCore, (W)PM2

- **Solution #2:**
 - Encode cardinality constraints to CNF
 - Use SAT solver
Equals1, AtLeast1 & AtMost1 Constraints

- \(\sum_{j=1}^{n} x_j = 1 \): encode with \((\sum_{j=1}^{n} x_j \leq 1) \land (\sum_{j=1}^{n} x_j \geq 1)\)

- \(\sum_{j=1}^{n} x_j \geq 1 \): encode with \((x_1 \lor x_2 \lor \ldots \lor x_n)\)

- \(\sum_{j=1}^{n} x_j \leq 1 \) encode with:
 - Pairwise encoding
 - Clauses: \(O(n^2)\) ; No auxiliary variables
 - Sequential counter
 - Clauses: \(O(n)\) ; Auxiliary variables: \(O(n)\)
 - Bitwise encoding
 - Clauses: \(O(n \log n)\) ; Auxiliary variables: \(O(\log n)\)
 - ...

[S05] [P07,FP01]
Bitwise Encoding

• Encode $\sum_{j=1}^{n} x_j \leq 1$ with bitwise encoding:

 – Auxiliary variables v_0, \ldots, v_{r-1}; $r = \lceil \log n \rceil$ (with $n > 1$)
 – If $x_j = 1$, then $v_0 \ldots v_{j-1} = b_0 \ldots b_{j-1}$, the binary encoding of $j-1$ $x_j \rightarrow (v_0 = b_0) \land \ldots \land (v_{j-1} = b_{j-1}) \iff (\overline{x_j} \lor (v_i = b_i)) = (\overline{x_j} \lor l_i), i = 0, \ldots, r-1$, where $l_i \equiv v_i$, if $b_i = 1$, $\overline{l_i} \equiv \overline{v_i}$, otherwise
 – If $x_j = 1$, assignment to v_i variables must encode $j-1$ ▶ All other x variables must take value 0
 – If all $x_j = 0$, any assignment to v_i variables is consistent

 – $O(n \log n)$ clauses; $O(\log n)$ auxiliary variables

• An example: $x_1 + x_2 + x_3 \leq 1$
Bitwise Encoding

- Encode \(\sum_{j=1}^{n} x_j \leq 1 \) with bitwise encoding:
 - Auxiliary variables \(v_0, \ldots, v_{r-1} \); \(r = \lceil \log n \rceil \) (with \(n > 1 \))
 - If \(x_j = 1 \), then \(v_0 \ldots v_{j-1} = b_0 \ldots b_{j-1} \), the binary encoding of \(j - 1 \)
 \(x_j \rightarrow (v_0 = b_0) \land \ldots \land (v_{j-1} = b_{j-1}) \iff (\bar{x}_j \lor (v_0 = b_0) \land \ldots \land (v_{j-1} = b_{j-1})) \)

- An example: \(x_1 + x_2 + x_3 \leq 1 \)

<table>
<thead>
<tr>
<th>(j - 1)</th>
<th>(v_1 v_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>0</td>
</tr>
<tr>
<td>(x_2)</td>
<td>1</td>
</tr>
<tr>
<td>(x_3)</td>
<td>2</td>
</tr>
</tbody>
</table>
Bitwise Encoding

- Encode $\sum_{j=1}^{n} x_j \leq 1$ with bitwise encoding:
 - Auxiliary variables v_0, \ldots, v_{r-1}; $r = \lceil \log n \rceil$ (with $n > 1$)
 - If $x_j = 1$, then $v_0 \ldots v_{j-1} = b_0 \ldots b_{j-1}$, the binary encoding of $j - 1$
 $x_j \rightarrow (v_0 = b_0) \land \ldots \land (v_{j-1} = b_{j-1}) \iff (\overline{x_j} \lor (v_0 = b_0) \land \ldots \land (v_{j-1} = b_{j-1}))$
 - Clauses $(\overline{x_j} \lor (v_i \leftrightarrow b_i)) = (\overline{x_j} \lor l_i)$, $i = 0, \ldots, r - 1$, where
 - $l_i \equiv v_i$, if $b_i = 1$
 - $l_i \equiv \overline{v_i}$, otherwise

- An example: $x_1 + x_2 + x_3 \leq 1$

<table>
<thead>
<tr>
<th>$j - 1$</th>
<th>$v_1 v_0$</th>
<th>$\overline{x_1} \lor \overline{v_1} \lor (\overline{x_1} \lor \overline{v_0})$</th>
<th>$\overline{x_2} \lor \overline{v_1} \lor (\overline{x_2} \lor v_0)$</th>
<th>$\overline{x_3} \lor v_1 \lor (\overline{x_3} \lor \overline{v_0})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0</td>
<td>00</td>
<td>(\overline{x_1} \lor \overline{v_1}) \land (\overline{x_1} \lor \overline{v_0})</td>
<td>(\overline{x_1} \lor \overline{v_1}) \land (\overline{x_1} \lor v_0)</td>
</tr>
<tr>
<td>x_2</td>
<td>1</td>
<td>01</td>
<td>(\overline{x_2} \lor \overline{v_1}) \land (\overline{x_2} \lor v_0)</td>
<td>(\overline{x_2} \lor \overline{v_1}) \land (\overline{x_2} \lor v_0)</td>
</tr>
<tr>
<td>x_3</td>
<td>2</td>
<td>10</td>
<td>(\overline{x_3} \lor v_1) \land (\overline{x_3} \lor \overline{v_0})</td>
<td>(\overline{x_3} \lor v_1) \land (\overline{x_3} \lor \overline{v_0})</td>
</tr>
</tbody>
</table>
Bitwise Encoding

- Encode $\sum_{j=1}^{n} x_j \leq 1$ with bitwise encoding:
 - Auxiliary variables v_0, \ldots, v_{r-1} ; $r = \lceil \log n \rceil$ (with $n > 1$)
 - If $x_j = 1$, then $v_0 \ldots v_{j-1} = b_0 \ldots b_{j-1}$, the binary encoding of $j - 1$

 $$x_j \rightarrow (v_0 = b_0) \land \ldots \land (v_{j-1} = b_{j-1}) \iff (\bar{x}_j \lor (v_0 = b_0) \land \ldots \land (v_{j-1} = b_{j-1}))$$
 - Clauses $(\bar{x}_j \lor (v_i \leftrightarrow b_i)) = (\bar{x}_j \lor l_i)$, $i = 0, \ldots, r - 1$, where
 - $l_i \equiv v_i$, if $b_i = 1$
 - $l_i \equiv \bar{v}_i$, otherwise
 - If $x_j = 1$, assignment to v_i variables must encode $j - 1$
 - All other x variables must take value 0
 - If all $x_j = 0$, any assignment to v_i variables is consistent
 - $O(n \log n)$ clauses ; $O(\log n)$ auxiliary variables

- An example: $x_1 + x_2 + x_3 \leq 1$

<table>
<thead>
<tr>
<th>$j - 1$</th>
<th>$v_1 v_0$</th>
<th>$(\bar{x}_1 \lor \bar{v}_1) \land (\bar{x}_1 \lor \bar{v}_0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0 00</td>
<td>$(\bar{x}_2 \lor \bar{v}_1) \land (\bar{x}_2 \lor v_0)$</td>
</tr>
<tr>
<td>x_2</td>
<td>1 01</td>
<td>$(\bar{x}_3 \lor v_1) \land (\bar{x}_3 \lor \bar{v}_0)$</td>
</tr>
<tr>
<td>x_3</td>
<td>2 10</td>
<td></td>
</tr>
</tbody>
</table>
General Cardinality Constraints

- General form: \(\sum_{j=1}^{n} x_j \leq k \) (or \(\sum_{j=1}^{n} x_j \geq k \))

 - Sequential counters
 - Clauses/Variables: \(O(nk) \)

 - BDDs
 - Clauses/Variables: \(O(nk) \)

 - Sorting networks
 - Clauses/Variables: \(O(n \log^2 n) \)

 - Cardinality Networks:
 - Clauses/Variables: \(O(n \log^2 k) \)

 - Pairwise Cardinality Networks:

 - ...
Outline

CNF Encodings
 Boolean Formulas
 Cardinality Constraints
 Pseudo-Boolean Constraints
 Encoding CSPs

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?
Pseudo-Boolean Constraints

- General form: $\sum_{j=1}^{n} a_j x_j \leq b$
 - Operational encoding
 - Clauses/Variables: $O(n)$
 - Does not guarantee arc-consistency
 - BDDs
 - Worst-case exponential number of clauses
 - Polynomial watchdog encoding
 - Let $\nu(n) = \log(n) \log(a_{max})$
 - Clauses: $O(n^3 \nu(n))$; Aux variables: $O(n^2 \nu(n))$
 - Improved polynomial watchdog encoding
 - Clauses & aux variables: $O(n^3 \log(a_{max}))$
 - ...

[W98] [ES06] [BBR09] [ANORC11b]
- Encode \(3x_1 + 3x_2 + x_3 \leq 3\)
- Construct BDD
 - E.g. analyze variables by decreasing coefficients
- Extract ITE-based circuit from BDD
- Encode $3x_1 + 3x_2 + x_3 \leq 3$
- Construct BDD
 - E.g. analyze variables by decreasing coefficients
- Extract ITE-based circuit from BDD
- Encode $3x_1 + 3x_2 + x_3 \leq 3$
- Extract ITE-based circuit from BDD
- Simplify and create final circuit:
More on PB Constraints

• How about $\sum_{j=1}^{n} a_j x_j = k$?
How about \(\sum_{j=1}^{n} a_j x_j = k \)?

- Can use \((\sum_{j=1}^{n} a_j x_j \geq k) \land (\sum_{j=1}^{n} a_j x_j \leq k)\), but...

 - \(\sum_{j=1}^{n} a_j x_j = k \) is a subset-sum constraint

 (special case of a knapsack constraint)
More on PB Constraints

• How about $\sum_{j=1}^{n} a_j x_j = k$?
 - Can use $(\sum_{j=1}^{n} a_j x_j \geq k) \land (\sum_{j=1}^{n} a_j x_j \leq k)$, but...
 ▶ $\sum_{j=1}^{n} a_j x_j = k$ is a subset-sum constraint
 (special case of a knapsack constraint)
 ▶ Cannot find all consequences in polynomial time

[S03,FS02,T03]
More on PB Constraints

• How about \(\sum_{j=1}^{n} a_j x_j = k \)?
 - Can use \((\sum_{j=1}^{n} a_j x_j \geq k) \land (\sum_{j=1}^{n} a_j x_j \leq k)\), but...
 - \(\sum_{j=1}^{n} a_j x_j = k \) is a subset-sum constraint
 (special case of a knapsack constraint)
 - Cannot find all consequences in polynomial time

[S03,FS02,T03]

• Example:

 \[4x_1 + 3x_2 + 2x_3 = 5 \]
More on PB Constraints

- How about \(\sum_{j=1}^{n} a_j x_j = k \)?
 - Can use \((\sum_{j=1}^{n} a_j x_j \geq k) \land (\sum_{j=1}^{n} a_j x_j \leq k)\), but...
 - \(\sum_{j=1}^{n} a_j x_j = k \) is a subset-sum constraint
 (special case of a knapsack constraint)
 - **Cannot** find all consequences in polynomial time [S03,FS02,T03]

- Example:

 \[
 4x_1 + 3x_2 + 2x_3 = 5
 \]
 - Replace by \((4x_1 + 3x_2 + 2x_3 \geq 5) \land (4x_1 + 3x_2 + 2x_3 \leq 5)\)
More on PB Constraints

- How about $\sum_{j=1}^{n} a_j x_j = k$?
 - Can use $(\sum_{j=1}^{n} a_j x_j \geq k) \land (\sum_{j=1}^{n} a_j x_j \leq k)$, but...
 - $\sum_{j=1}^{n} a_j x_j = k$ is a subset-sum constraint
 - (special case of a knapsack constraint)
 - Cannot find all consequences in polynomial time

- Example:

 \[4x_1 + 3x_2 + 2x_3 = 5 \]
 - Replace by $(4x_1 + 3x_2 + 2x_3 \geq 5) \land (4x_1 + 3x_2 + 2x_3 \leq 5)$
 - Let $x_2 = 0$
More on PB Constraints

- How about $\sum_{j=1}^{n} a_j x_j = k$?
 - Can use $(\sum_{j=1}^{n} a_j x_j \geq k) \land (\sum_{j=1}^{n} a_j x_j \leq k)$, but...
 - $\sum_{j=1}^{n} a_j x_j = k$ is a subset-sum constraint
 (special case of a knapsack constraint)
 - Cannot find all consequences in polynomial time [S03,FS02,T03]

- Example:

 $4x_1 + 3x_2 + 2x_3 = 5$

 - Replace by $(4x_1 + 3x_2 + 2x_3 \geq 5) \land (4x_1 + 3x_2 + 2x_3 \leq 5)$
 - Let $x_2 = 0$
 - Either constraint can still be satisfied, but not both
Outline

CNF Encodings
 Boolean Formulas
 Cardinality Constraints
 Pseudo-Boolean Constraints
 Encoding CSPs

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?
CSP Constraints

- Many possible encodings:
 - Direct encoding \[dK89,GJ96,W00\]
 - Log encoding \[W00\]
 - Support encoding \[K90,G02\]
 - Log-Support encoding \[G07\]
 - Order encoding for finite linear CSPs \[TTKB09\]
• Variable x_i with domain D_i, with $m_i = |D_i|$

• Represent values of x_i with Boolean variables $x_{i,1}, \ldots, x_{i,m_i}$

• Require $\sum_{k=1}^{m_i} x_{i,k} = 1$
 - Suffices to require $\sum_{k=1}^{m_i} x_{i,k} \geq 1$ [W00]

• If the pair of assignments $x_i = v_i \land x_j = v_j$ is not allowed, add binary clause $\left(\overline{x}_{i,v_i} \lor \overline{x}_{j,v_j} \right)$
Outline

CNF Encodings

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?
Embedding SAT Solvers

- Modify SAT solver to interface problem-specific propagators (or theory solvers)
- Typical interface:
 - SAT solvers communicates assignments/constraints to propagators
 - Retrieve resulting assignments or explanations for inconsistency
- Well-known examples (many more):
 - Branch&bound PB optimization
 - Non-clausal SAT solvers
 - Lazy SMT solving (see later talks)
- Key problem:
 - Keeping up with improvements in SAT solvers
Pseudo-Boolean Constraints & Optimization

- Pseudo-Boolean Constraints:
 - Boolean variables: x_1, \ldots, x_n
 - Linear inequalities:
 \[
 \sum_{j \in \mathbb{N}} a_{ij} l_j \geq b_i, \quad l_j \in \{x_j, \bar{x}_j\}, \quad x_j \in \{0, 1\}, \quad a_{ij}, b_i \in \mathbb{N}_0^+
 \]
Pseudo-Boolean Constraints & Optimization

- **Pseudo-Boolean Constraints:**
 - Boolean variables: \(x_1, \ldots, x_n \)
 - Linear inequalities:
 \[
 \sum_{j \in N} a_{ij} l_j \geq b_i, \quad l_j \in \{x_j, \bar{x}_j\}, \; x_j \in \{0, 1\}, \; a_{ij}, b_i \in \mathbb{N}_0^+
 \]

- **Pseudo-Boolean Optimization (PBO):**
 \[
 \text{minimize} \quad \sum_{j \in N} c_j \cdot x_j \\
 \text{subject to} \quad \sum_{j \in N} a_{ij} l_j \geq b_i, \\
 \quad l_j \in \{x_j, \bar{x}_j\}, \; x_j \in \{0, 1\}, \; a_{ij}, b_i, c_j \in \mathbb{N}_0^+
 \]
Pseudo-Boolean Constraints & Optimization

• Pseudo-Boolean Constraints:
 – Boolean variables: \(x_1, \ldots, x_n \)
 – Linear inequalities:
 \[\sum_{j \in N} a_{ij} l_j \geq b_i, \quad l_j \in \{x_j, \bar{x}_j\}, \quad x_j \in \{0, 1\}, \quad a_{ij}, b_i \in \mathbb{N}_0^+ \]

• Pseudo-Boolean Optimization (PBO):

 minimize \(\sum_{j \in N} c_j \cdot x_j \)

 subject to \(\sum_{j \in N} a_{ij} l_j \geq b_i, \)

 \(l_j \in \{x_j, \bar{x}_j\}, \quad x_j \in \{0, 1\}, \quad a_{ij}, b_i, c_j \in \mathbb{N}_0^+ \)

• Branch and bound (B&B) PBO algorithm:
 – Extend SAT solver
 – Must develop propagator for PB constraints
 – B&B search for computing optimum cost function value
 ▶ Trivial upper bound: all \(x_j = 1 \)
Limitations with Embeddings

- **B&B MaxSAT solving:**
 - Cannot use unit propagation
 - Cannot learn clauses

- **MUS extraction:**
 - Decision of clauses to include in MUS based on unsatisfiable outcomes
 - No immediate gain from embedding SAT solvers
Outline

CNF Encodings

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?
Practical Aspects of Using SAT Oracles

- **Incremental vs. non-incremental SAT**

 - **Incremental SAT**:
 - Replace each clause (C_i) with ($C_i \lor \neg a_i$), where a_i is an assumption variable.
 - When calling SAT solver, each assumption can be assigned 1, 0, or left unassigned.
 - $a_i = 1$ to activate clause C_i.
 - $a_i = 0$ to deactivate clause C_i.
 - Add clause ($\neg a_i$) to delete C_i.
 - Note: incremental SAT enables clause reuse.

 - **Non-incremental SAT**:
 - Submit complete formula to SAT solver in each iteration.
 - Note: difficult to instrument clause reuse.

- What does the SAT oracle compute/return?

 1. Yes/No: $(st) \leftarrow \text{SAT}(F)$
 2. Compute model: $(st, \mu) \leftarrow \text{SAT}(F)$
 3. Compute unsatisfiable cores: $(st, \mu, U) \leftarrow \text{SAT}(F)$
 4. Compute proof traces/resolution proof: $(st, \mu, T) \leftarrow \text{SAT}(F)$
Practical Aspects of Using SAT Oracles

• Incremental vs. non-incremental SAT

 – Incremental SAT:

 ▶ Replace each clause (C_i) with ($C_i \lor \overline{a_i}$), where a_i is assumption variable

 ▶ When calling SAT solver, each assumption can be assigned 1, 0, or be left unassigned

 – Non-incremental SAT:
Practical Aspects of Using SAT Oracles

- **Incremental vs. non-incremental SAT**
 - **Incremental SAT:**
 - Replace each clause \(C_i \) with \(C_i \lor \bar{a}_i \), where \(a_i \) is an assumption variable
 - When calling SAT solver, each assumption can be assigned 1, 0, or be left unassigned
 - \(a_i = 1 \) to activate clause \(C_i \)
 - \(a_i = 0 \) to deactivate clause \(C_i \)
 - **Non-incremental SAT:**

- What does the SAT oracle compute/return?
 1. Yes/No: \(st \leftarrow \text{SAT}(F) \)
 2. Compute model: \((st, \mu) \leftarrow \text{SAT}(F) \)
 3. Compute unsatisfiable cores: \((st, \mu, U) \leftarrow \text{SAT}(F) \)
 4. Compute proof traces/resolution proof: \((st, \mu, T) \leftarrow \text{SAT}(F) \)
Practical Aspects of Using SAT Oracles

- **Incremental vs. non-incremental SAT**
 - Incremental SAT:
 - Replace each clause (C_i) with $(C_i \lor \overline{a_i})$, where a_i is assumption variable.
 - When calling SAT solver, each assumption can be assigned 1, 0, or be left unassigned.
 - $a_i = 1$ to activate clause C_i.
 - $a_i = 0$ to deactivate clause C_i.
 - Add clause $(\overline{a_i})$ to delete C_i.
 - Non-incremental SAT:

[ES03]
Practical Aspects of Using SAT Oracles

- **Incremental vs. non-incremental SAT**
 - Incremental SAT:
 - Replace each clause \((C_i)\) with \((C_i \lor \bar{a}_i)\), where \(a_i\) is assumption variable
 - When calling SAT solver, each assumption can be assigned 1, 0, or be left unassigned
 - \(a_i = 1\) to activate clause \(C_i\)
 - \(a_i = 0\) to deactivate clause \(C_i\)
 - Add clause \(\bar{a}_i\) to delete \(C_i\)
 - **Note**: incremental SAT enables clause reuse
 - Non-incremental SAT:

- [ES03]
Practical Aspects of Using SAT Oracles

- **Incremental vs. non-incremental SAT**
 - **Incremental SAT:**
 - Replace each clause \((C_i)\) with \((C_i \lor \overline{a_i})\), where \(a_i\) is assumption variable
 - When calling SAT solver, each assumption can be assigned 1, 0, or be left unassigned
 - \(a_i = 1\) to activate clause \(C_i\)
 - \(a_i = 0\) to deactivate clause \(C_i\)
 - Add clause \((\overline{a_i})\) to delete \(C_i\)
 - **Note:** incremental SAT enables clause reuse
 - **Non-incremental SAT:**
 - Submit complete formula to SAT solver in each iteration
 - **Note:** difficult to instrument clause reuse

What does the SAT oracle compute/return?

1. Yes/No: \((\text{st}) \leftarrow \text{SAT}(F)\)
2. Compute model: \((\text{st}, \mu) \leftarrow \text{SAT}(F)\)
3. Compute unsatisfiable cores: \((\text{st}, \mu, \text{U}) \leftarrow \text{SAT}(F)\)
4. Compute proof traces/resolution proof: \((\text{st}, \mu, \text{T}) \leftarrow \text{SAT}(F)\)
Practical Aspects of Using SAT Oracles

- **Incremental vs. non-incremental SAT**
 - **Incremental SAT:**
 - Replace each clause (C_i) with ($C_i \lor \bar{a}_i$), where a_i is assumption variable
 - When calling SAT solver, each assumption can be assigned 1, 0, or be left unassigned
 - $a_i = 1$ to activate clause C_i
 - $a_i = 0$ to deactivate clause C_i
 - Add clause (\bar{a}_i) to delete C_i
 - **Note:** incremental SAT enables clause reuse
 - **Non-incremental SAT:**
 - Submit complete formula to SAT solver in each iteration
 - **Note:** difficult to instrument clause reuse

- **What does the SAT oracle compute/return?**
 1. Yes/No: (st) \leftarrow SAT(\mathcal{F})
Practical Aspects of Using SAT Oracles

- **Incremental vs. non-incremental SAT**
 - Incremental SAT:
 - Replace each clause \((C_i)\) with \((C_i \lor \overline{a_i})\), where \(a_i\) is assumption variable
 - When calling SAT solver, each assumption can be assigned 1, 0, or be left unassigned
 - \(a_i = 1\) to activate clause \(C_i\)
 - \(a_i = 0\) to deactivate clause \(C_i\)
 - Add clause \((\overline{a_i})\) to delete \(C_i\)
 - **Note**: incremental SAT enables clause reuse
 - Non-incremental SAT:
 - Submit complete formula to SAT solver in each iteration
 - **Note**: difficult to instrument clause reuse

- **What does the SAT oracle compute/return?**
 1. Yes/No: \((st) \leftarrow SAT(F)\)
 2. Compute model: \((st, \mu) \leftarrow SAT(F)\)
Practical Aspects of Using SAT Oracles

• **Incremental vs. non-incremental SAT**

 - **Incremental SAT:**
 - Replace each clause \((C_i) \) with \((C_i \lor \bar{a}_i) \), where \(a_i \) is assumption variable
 - When calling SAT solver, each assumption can be assigned 1, 0, or be left unassigned
 - \(a_i = 1 \) to activate clause \(C_i \)
 - \(a_i = 0 \) to deactivate clause \(C_i \)
 - Add clause \((\bar{a}_i) \) to delete \(C_i \)
 - **Note:** incremental SAT enables clause reuse

 - **Non-incremental SAT:**
 - Submit complete formula to SAT solver in each iteration
 - **Note:** difficult to instrument clause reuse

• What does the SAT oracle compute/return?

 1. **Yes/No:** \((st) \leftarrow \text{SAT}(\mathcal{F})\)
 2. Compute **model:** \((st, \mu) \leftarrow \text{SAT}(\mathcal{F})\)
 3. Compute **unsatisfiable cores:** \((st, \mu, \mathcal{U}) \leftarrow \text{SAT}(\mathcal{F})\)
Practical Aspects of Using SAT Oracles

• **Incremental vs. non-incremental SAT**

 - **Incremental SAT**:
 - Replace each clause \((C_i)\) with \((C_i \lor \overline{a_i})\), where \(a_i\) is an assumption variable
 - When calling SAT solver, each assumption can be assigned 1, 0, or left unassigned
 - \(a_i = 1\) to activate clause \(C_i\)
 - \(a_i = 0\) to deactivate clause \(C_i\)
 - Add clause \((\overline{a_i})\) to delete \(C_i\)
 - **Note**: incremental SAT enables clause reuse

 - **Non-incremental SAT**:
 - Submit complete formula to SAT solver in each iteration
 - **Note**: difficult to instrument clause reuse

• What does the SAT oracle compute/return?

 1. Yes/No: \((st) \leftarrow SAT(F)\)
 2. Compute model: \((st, \mu) \leftarrow SAT(F)\)
 3. Compute unsatisfiable cores: \((st, \mu, U) \leftarrow SAT(F)\)
 4. Compute proof traces/resolution proof: \((st, \mu, T) \leftarrow SAT(F)\)
Outline

CNF Encodings

SAT Embeddings

SAT Oracles
 MUS Extraction
 MaxSAT
 2QBF

What Next in SAT-Based Problem Solving?
Defining MUSes

- Formula is **unsatisfiable** but not irreducible
Defining MUSes

- Formula is *unsatisfiable* but not irreducible
- Can remove clauses, and formula still *unsatisfiable*
Defining MUSes

- Formula is **unsatisfiable** but not irreducible
- Can remove clauses, and formula still unsatisfiable
- A **Minimal Unsatisfiable Subformula (MUS)** is an unsatisfiable and irreducible subformula
Defining MUSes

- Formula is unsatisfiable but not irreducible
- Can remove clauses, and formula still unsatisfiable
- A Minimal Unsatisfiable Subformula (MUS) is an unsatisfiable and irreducible subformula
Defining MUSes

- Formula is **unsatisfiable** but not irreducible
- Can remove clauses, and formula still **unsatisfiable**
- A **Minimal Unsatisfiable Subformula (MUS)** is an **unsatisfiable** and **irreducible** subformula

<table>
<thead>
<tr>
<th>Clause 1</th>
<th>Clause 2</th>
<th>Clause 3</th>
<th>Clause 4</th>
<th>Clause 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_6 \lor x_2$</td>
<td>$\neg x_6 \lor x_2$</td>
<td>$\neg x_2 \lor x_1$</td>
<td>$\neg x_1$</td>
<td>$x_2 \lor x_4$</td>
</tr>
<tr>
<td>$\neg x_6 \lor x_8$</td>
<td>$x_6 \lor \neg x_8$</td>
<td>$x_4 \lor x_5$</td>
<td>$\neg x_4 \lor x_5$</td>
<td>$\neg x_3 \lor x_3$</td>
</tr>
</tbody>
</table>
Defining MUSes

- Formula is **unsatisfiable** but not irreducible
- Can remove clauses, and formula still **unsatisfiable**
- A **Minimal Unsatisfiable Subformula (MUS)** is an **unsatisfiable** and **irreducible** subformula
- How to compute an MUS?
Deletion-Based MUS Extraction

Input: Unsatisfiable CNF Formula \mathcal{F}
Output: MUS \mathcal{M}

begin
\[
\mathcal{M} \leftarrow \mathcal{F} \quad \text{// MUS over-approximation}
\]
foreach $c \in \mathcal{M}$ do
\[
\text{if not SAT}(\mathcal{M} \setminus \{c\}) \text{ then}
\]
\[
\quad \mathcal{M} \leftarrow \mathcal{M} \setminus \{c\} \quad \text{// If UNSAT}(\mathcal{M} \setminus \{c\}), \text{ then } c \not\in \mathcal{M}
\]
return \mathcal{M} \quad \text{// Final \mathcal{M} is MUS}
end

- Number of calls to SAT solver: $\mathcal{O}(|\mathcal{F}|)$
Deletion-Based MUS Extraction

Input: Unsatisfiable CNF Formula \mathcal{F}

Output: MUS \mathcal{M}

begin

\[\mathcal{M} \leftarrow \mathcal{F} \] // MUS over-approximation

foreach $c \in \mathcal{M}$ do

if not SAT($\mathcal{M} \setminus \{c\}$) then

\[\mathcal{M} \leftarrow \mathcal{M} \setminus \{c\} \] // Remove c from \mathcal{M}

return \mathcal{M}

end

- Number of calls to SAT solver: $O(|\mathcal{F}|)$
An Example

\[(\neg x_1 \lor x_2)\]
\[(\neg x_3 \lor x_2)\]
\[(x_1 \lor x_2)\]
\[(\neg x_3)\]
\[(\neg x_2)\]

UNSAT instance
An Example

\((\neg x_1 \lor x_2)\)
\((\neg x_3 \lor x_2)\)
\((x_1 \lor x_2)\)
\((\neg x_3)\)
\((\neg x_2)\)

Hide clause \((\neg x_1 \lor x_2)\)
An Example

SAT instance \rightarrow keep clause $(\neg x_1 \lor x_2)$
An Example

\[(\neg x_1 \lor x_2) \]
\[(\neg x_3 \lor x_2) \]
\[(x_1 \lor x_2) \]
\[(\neg x_3) \]
\[(\neg x_2) \]

Hide clause \((\neg x_3 \lor x_2)\)
An Example

\[(\neg x_1 \lor x_2) \]
\[(\neg x_3) \]
\[(x_1 \lor x_3) \]
\[(\neg x_2) \]

UNSAT instance → **remove** clause \((\neg x_3 \lor x_2)\)
An Example

Hide clause $(x_1 \lor x_2)$
An Example

\[(\neg x_1 \lor x_2)\]
\[(\neg x_3 \lor x_2)\]
\[(x_1 \lor x_2)\]
\[(\neg x_3)\]
\[(\neg x_2)\]

SAT instance → keep clause \((x_1 \lor x_2)\)
An Example

$(\neg x_1 \lor x_2)$
$(\neg x_3 \lor x_2)$
$(x_1 \lor x_2)$
$(\neg x_3)$
$(\neg x_2)$

Hide clause $(\neg x_3)$
An Example

\((\neg x_1 \lor x_2)\)
\((x_1 \lor x_2)\)
\((\neg x_3)\)
\((\neg x_2)\)

UNSAT instance \(\rightarrow\) **remove** clause \((\neg x_3)\)
An Example

Hide clause \((\neg x_2)\)
An Example

\[(\neg x_1 \lor x_2) \]
\[(\neg x_3 \lor x_2) \]
\[(x_1 \lor x_3) \]
\[(x_3) \]

SAT instance \rightarrow keep clause ($\neg x_2$)
An Example

\((\neg x_1 \lor x_2) \)
\((x_1 \lor x_2) \)
\((\neg x_2) \)

Computed MUS
More on MUS Extraction

<table>
<thead>
<tr>
<th>Algorithm</th>
<th># Oracle Calls</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion (Default)</td>
<td>$O(m \times k)$</td>
<td>[SP88]</td>
</tr>
<tr>
<td>Deletion (Default)</td>
<td>$O(m)$</td>
<td>[CD91,BDTW93]</td>
</tr>
<tr>
<td>QuickXplain</td>
<td>$O(k \times (1 + \log \frac{m}{k}))$</td>
<td>[J01,J04]</td>
</tr>
<tr>
<td>Dichotomic</td>
<td>$O(k \times \log m)$</td>
<td>[HLSB06]</td>
</tr>
<tr>
<td>Insertion with Relaxation Variables</td>
<td>$O(m)$</td>
<td>[MSL11]</td>
</tr>
<tr>
<td>Deletion with Model Rotation</td>
<td>$O(m)$</td>
<td>[BLMS12,MSL11]</td>
</tr>
<tr>
<td>Progression</td>
<td>$O(k \times \log(1 + \frac{m}{k}))$</td>
<td>[MSJB13]</td>
</tr>
</tbody>
</table>

- **Additional Techniques:**
 - Restrict formula to unsatisfiable subsets
 - [BDTW93,HLSB06,DHN06,MSL11]
 - Check redundancy condition
 - [vMW08,MSL11,BLMS12]
 - Model rotation, recursive model rotation, etc.
 - [MSL11,BMS11,BLMS12,W12]
More on MUS Extraction

<table>
<thead>
<tr>
<th>Algorithm</th>
<th># Oracle Calls</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion (Default)</td>
<td>$O(m \times k)$</td>
<td>[SP88]</td>
</tr>
<tr>
<td>Deletion (Default)</td>
<td>$O(m)$</td>
<td>[CD91,BDTW93]</td>
</tr>
<tr>
<td>QuickXplain</td>
<td>$O(k \times (1 + \log \frac{m}{k}))$</td>
<td>[J01,J04]</td>
</tr>
<tr>
<td>Dichotomic</td>
<td>$O(k \times \log m)$</td>
<td>[HLSB06]</td>
</tr>
<tr>
<td>Insertion with Relaxation Variables</td>
<td>$O(m)$</td>
<td>[MSL11]</td>
</tr>
<tr>
<td>Deletion with Model Rotation</td>
<td>$O(m)$</td>
<td>[BLMS12,MSL11]</td>
</tr>
<tr>
<td>Progression</td>
<td>$O(k \times \log(1 + \frac{m}{k}))$</td>
<td>[MSJB13]</td>
</tr>
</tbody>
</table>

- Additional Techniques:
 - Restrict formula to unsatisfiable subsets [BDTW93,HLSB06,DHN06,MSL11]
 - Check redundancy condition [vMW08,MSL11,BLMS12]
 - Model rotation, recursive model rotation, etc. [MSL11,BMS11,BLMS12,W12]
Outline

CNF Encodings

SAT Embeddings

SAT Oracles

MUS Extraction
MaxSAT
2QBF

What Next in SAT-Based Problem Solving?
Given **unsatisfiable** formula, find **largest** subset of clauses that is satisfiable
Defining Maximum Satisfiability

- Given unsatisfiable formula, find largest subset of clauses that is satisfiable
- A Minimal Correction Subset (MCS) is an irreducible relaxation of the formula
Defining Maximum Satisfiability

- Given **unsatisfiable** formula, find **largest** subset of clauses that is satisfiable
- A **Minimal Correction Subset (MCS)** is an irreducible relaxation of the formula
- The MaxSAT solution is one of the **smallest** MCSes
MaxSAT Problem(s)

- **MaxSAT:**
 - All clauses are soft
 - Maximize number of satisfied soft clauses
 - Minimize number of unsatisfied soft clauses
MaxSAT Problem(s)

- **MaxSAT:**
 - All clauses are soft
 - Maximize number of satisfied soft clauses
 - Minimize number of unsatisfied soft clauses

- **Partial MaxSAT:**
 - Hard clauses must be satisfied
 - Minimize number of unsatisfied soft clauses
MaxSAT Problem(s)

- **MaxSAT:**
 - All clauses are soft
 - Maximize number of satisfied soft clauses
 - Minimize number of unsatisfied soft clauses

- **Partial MaxSAT:**
 - Hard clauses must be satisfied
 - Minimize number of unsatisfied soft clauses

- **Weighted MaxSAT**
 - Weights associated with (soft) clauses
 - Minimize sum of weights of unsatisfied clauses
MaxSAT Problem(s)

- **MaxSAT**:
 - All clauses are soft
 - Maximize number of satisfied soft clauses
 - Minimize number of unsatisfied soft clauses

- **Partial MaxSAT**:
 - Hard clauses must be satisfied
 - Minimize number of unsatisfied soft clauses

- **Weighted MaxSAT**:
 - Weights associated with (soft) clauses
 - Minimize sum of weights of unsatisfied clauses

- **Weighted Partial MaxSAT**:
 - Weights associated with soft clauses
 - Hard clauses must be satisfied
 - Minimize sum of weights of unsatisfied soft clauses
Definitions

- **Cost of assignment:**
 - Sum of weights of unsatisfied clauses

- **Optimum solution (OPT):**
 - Assignment with minimum cost

- **Upper Bound (UB):**
 - Assignment with cost not less than OPT
 - E.g. $\sum_{c_i \in \Phi} w_i + 1$; hard clauses may be inconsistent

- **Lower Bound (LB):**
 - No assignment with cost no larger than LB
 - E.g. -1; it may be possible to satisfy all soft clauses
Definitions

- **Cost of assignment:**
 - Sum of weights of *unsatisfied* clauses
- **Optimum solution (OPT):**
 - Assignment with *minimum* cost
- **Upper Bound (UB):**
 - Assignment with cost *not less* than OPT
 - E.g. \[\sum_{c_i \in \varphi} w_i + 1\]; hard clauses may be inconsistent
- **Lower Bound (LB):**
 - No assignment with cost *no larger* than LB
 - E.g. \[-1\]; it may be possible to satisfy all soft clauses
Iterative SAT Solving – Refine UB

- Require $\sum w_i r_i \leq UB_0 - 1$

![Diagram showing LB, OPT, and UB0 with the requirement $\sum w_i r_i \leq UB_0 - 1$]
Iterative SAT Solving – Refine UB

- Require $\sum w_i r_i \leq UB_0 - 1$
- While SAT, refine UB
 - New UB given by cost of unsatisfied clauses, i.e. $\sum w_i r_i$
Iterative SAT Solving – Refine UB

- Require $\sum w_i r_i \leq UB_0 - 1$
- While SAT, refine UB
 - New UB given by cost of unsatisfied clauses, i.e. $\sum w_i r_i$
Iterative SAT Solving – Refine UB

- Require $\sum w_i r_i \leq UB_0 - 1$
- While SAT, refine UB
 - New UB given by cost of unsatisfied clauses, i.e. $\sum w_i r_i$
- Repeat until constraint $\sum w_i r_i \leq UB_k - 1$ becomes UNSAT
 - UB_k denotes the optimum value

![Diagram showing the relationship between LB, UB, OPT, UB_k, and UB_n. The diagram includes a line segment with LB at one end and UB at the other, with OPT, UB_k, and UB_n as labeled points along the line.]
Iterative SAT Solving – Refine UB

- Require $\sum w_i r_i \leq UB_0 - 1$
- While SAT, refine UB
 - New UB given by cost of unsatisfied clauses, i.e. $\sum w_i r_i$
- Repeat until constraint $\sum w_i r_i \leq UB_k - 1$ becomes UNSAT
 - UB_k denotes the optimum value

- Worst-case # of iterations \textbf{exponential} on instance size
Iterative SAT Solving – Refine UB

- Require \(\sum w_i r_i \leq UB_0 - 1 \)
- While SAT, refine UB
 - New UB given by cost of unsatisfied clauses, i.e. \(\sum w_i r_i \)
- Repeat until constraint \(\sum w_i r_i \leq UB_k - 1 \) becomes UNSAT
 - \(UB_k \) denotes the optimum value

- Worst-case # of iterations **exponential** on instance size

- Example tools:
 - Minisat+: CNF encoding of constraints
 - SAT4J: native handling of constraints
 - QMaxSat: CNF encoding of constraints
 - ...
Fu&Malik’s Core-Guided Approach

Example CNF formula

\[\begin{align*}
x_6 \lor x_2 & \quad \neg x_6 \lor x_2 & \quad \neg x_2 \lor x_1 & \quad \neg x_1 \\
\neg x_6 \lor x_8 & \quad x_6 \lor \neg x_8 & \quad x_2 \lor x_4 & \quad \neg x_4 \lor x_5 \\
x_7 \lor x_5 & \quad \neg x_7 \lor x_5 & \quad \neg x_5 \lor x_3 & \quad \neg x_3
\end{align*}\]
Fu&Malik’s Core-Guided Approach

Formula is **UNSAT**; \(\text{OPT} \leq |\varphi| - 1 \); Get unsat core
Fu&Malik’s Core-Guided Approach

\[x_6 \lor x_2 \quad \neg x_6 \lor x_2 \quad \neg x_2 \lor x_1 \lor r_1 \quad \neg x_1 \lor r_2 \]

\[\neg x_6 \lor x_8 \quad x_6 \lor \neg x_8 \quad x_2 \lor x_4 \lor r_3 \quad \neg x_4 \lor x_5 \lor r_4 \]

\[x_7 \lor x_5 \quad \neg x_7 \lor x_5 \quad \neg x_5 \lor x_3 \lor r_5 \quad \neg x_3 \lor r_6 \]

\[\sum_{i=1}^{6} r_i \leq 1 \]

Add relaxation variables and AtMost1 constraint
Fu&Malik’s Core-Guided Approach

Formula is (again) **UNSAT**; $\text{OPT} \leq |\varphi| - 2$; Get unsat core
Fu&Malik’s Core-Guided Approach

\[x_6 \lor x_2 \lor r_7 \quad \neg x_6 \lor x_2 \lor r_8 \quad \neg x_2 \lor x_1 \lor r_1 \lor r_9 \quad \neg x_1 \lor r_2 \lor r_{10} \]

\[\neg x_6 \lor x_8 \quad x_6 \lor \neg x_8 \quad x_2 \lor x_4 \lor r_3 \quad \neg x_4 \lor x_5 \lor r_4 \]

\[x_7 \lor x_5 \lor r_{11} \quad \neg x_7 \lor x_5 \lor r_{12} \quad \neg x_5 \lor x_3 \lor r_5 \lor r_{13} \quad \neg x_3 \lor r_6 \lor r_{14} \]

\[\sum_{i=1}^{6} r_i \leq 1 \quad \sum_{i=7}^{14} r_i \leq 1 \]

Add new relaxation variables and AtMost1 constraint
Fu&Malik’s Core-Guided Approach

\[x_6 \lor x_2 \lor r_7 \]
\[\neg x_6 \lor x_2 \lor r_8 \]
\[\neg x_2 \lor x_1 \lor r_1 \lor r_9 \]
\[\neg x_1 \lor r_2 \lor r_{10} \]
\[\neg x_6 \lor x_8 \]
\[x_6 \lor \neg x_8 \]
\[x_2 \lor x_4 \lor r_3 \]
\[\neg x_4 \lor x_5 \lor r_4 \]
\[x_7 \lor x_5 \lor r_{11} \]
\[\neg x_7 \lor x_5 \lor r_{12} \]
\[\neg x_5 \lor x_3 \lor r_5 \lor r_{13} \]
\[\neg x_3 \lor r_6 \lor r_{14} \]
\[\sum_{i=1}^{6} r_i \leq 1 \]
\[\sum_{i=7}^{14} r_i \leq 1 \]

Instance is now \textit{SAT}
Fu&Malik’s Core-Guided Approach

\[x_6 \lor x_2 \lor r_7 \]
\[\neg x_6 \lor x_2 \lor r_8 \]
\[\neg x_2 \lor x_1 \lor r_1 \lor r_9 \]
\[\neg x_1 \lor r_2 \lor r_{10} \]
\[\neg x_6 \lor x_8 \]
\[x_6 \lor \neg x_8 \]
\[x_2 \lor x_4 \lor r_3 \]
\[\neg x_4 \lor x_5 \lor r_4 \]
\[x_7 \lor x_5 \lor r_{11} \]
\[\neg x_7 \lor x_5 \lor r_{12} \]
\[\neg x_5 \lor x_3 \lor r_5 \lor r_{13} \]
\[\neg x_3 \lor r_6 \lor r_{14} \]

\[\sum_{i=1}^{6} r_i \leq 1 \]
\[\sum_{i=7}^{14} r_i \leq 1 \]

MaxSAT solution is \(|\varphi| - \mathcal{I} = 12 - 2 = 10 \)
Organization of Fu\&Malik’s Algorithm

• Clauses characterized as:
 – **Soft**: initial set of soft clauses
 – **Hard**: initially hard, or added during execution of algorithm
 ▶ E.g. clauses from AtMost1 constraints

• While exist unsatisfiable cores
 – Add fresh set B of relaxation variables to soft clauses in core
 – Add new AtMost1 constraint
 \[
 \sum_{b_i \in B} b_i \leq 1
 \]
 ▶ At most 1 relaxation variable from set B can take value 1

• (Partial) MaxSAT solution is $|\varphi| - I$
 – I: number of iterations (≡ number of computed unsat cores)
Organization of Fu&Malik’s Algorithm

- Clauses characterized as:
 - **Soft**: initial set of soft clauses
 - **Hard**: initially hard, or added during execution of algorithm
 - E.g. clauses from AtMost1 constraints

- While exist unsatisfiable cores
 - Add fresh set B of relaxation variables to soft clauses in core
 - Add new AtMost1 constraint

 $\sum_{b_i \in B} b_i \leq 1$

 - At most 1 relaxation variable from set B can take value 1

- (Partial) MaxSAT solution is $|\varphi| - I$
 - I: number of iterations (\equiv number of computed unsat cores)

- Can be adapted for weighted MaxSAT

 [FM06, ABL09a, MMSP09]
Oracle-Based MaxSAT Solving I

- **Iterative:**
 - Linear search SAT/UNSAT (refine UB)
 - Linear search UNSAT/SAT (refine LB)
 - Binary search
 - Bit-based
 - Mixed linear/binary search

- **Core-Guided:**
 - FM/(W)MSU1.X/WPM1
 - (W)MSU3
 - (W)MSU4
 - (W)PM2
 - Core-guided binary search (w/ disjoint cores)
 - Bin-Core, Bin-Core-Dis, Bin-Core-Dis2

- **Iterative subsetting**
Oracle MaxSAT Solving II

- A sample of recent algorithms:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th># Oracle Calls</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear search SU</td>
<td>Exponential</td>
<td>[e.g. LP10]</td>
</tr>
<tr>
<td>Binary search</td>
<td>Linear</td>
<td>[e.g. FM06]</td>
</tr>
<tr>
<td>WMSU1/WPM1</td>
<td>Exponential*</td>
<td>[FM06, MSM08, MMSP09, ABL09a, ABGL12]</td>
</tr>
<tr>
<td>WPM2</td>
<td>Exponential*</td>
<td>[ABL10, ABGL13]</td>
</tr>
<tr>
<td>Bin-Core-Dis</td>
<td>Linear</td>
<td>[HMMS11, MHMS12]</td>
</tr>
<tr>
<td>Iterative subsetting</td>
<td>Exponential</td>
<td>[DB11, DB13a, DB13b]</td>
</tr>
</tbody>
</table>

* Weighted case; depends on computed cores

- Example MaxSAT solvers:
 - MSUnCore; WPM1, WPM2; QMaxSAT; SAT4J; etc.
Outline

- CNF Encodings
- SAT Embeddings
- SAT Oracles
 - MUS Extraction
 - MaxSAT
 - 2QBF
- What Next in SAT-Based Problem Solving?
Given: $\exists X \forall Y. \phi$, where ϕ is a propositional formula

Question: Is there an assignment τ to X such that $\forall Y. \phi[X/\tau]$?
Given: $\exists X \forall Y. \phi$, where ϕ is a propositional formula

Question: Is there an assignment τ to X such that $\forall Y. \phi[X/\tau]$?

Example

$\exists x_1, x_2 \forall y_1, y_2. (x_1 \rightarrow y_1) \land (x_2 \rightarrow y_2)$

solution: $x_1 = 0, x_2 = 0$
Motivation

- Σ_2^P complete
- interesting problems in this class, e.g. certain nonmonotonic reasoning, aspects of model checking, conformant planning
- separate track at QBF Eval
Looking at Assignments
Looking at Assignments

<table>
<thead>
<tr>
<th>(X)</th>
<th>(\xi)</th>
<th>(\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- \(Y \)
- \(\mu \)
- \(\xi \)
- 1
Looking at Assignments

<table>
<thead>
<tr>
<th></th>
<th>Y</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ξ</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

...
Looking at Assignments

<table>
<thead>
<tr>
<th></th>
<th>Y</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ξ</td>
<td>1 0</td>
<td>0 1</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>τ</td>
<td>1 1</td>
<td>1 1</td>
</tr>
</tbody>
</table>
Looking at Assignments

<table>
<thead>
<tr>
<th></th>
<th>$\phi[Y/\mu]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ</td>
<td>1 0 ... 0 1 ... 1</td>
</tr>
<tr>
<td>τ</td>
<td>1 1 ... 1 1 ... 1</td>
</tr>
<tr>
<td>X</td>
<td>μ</td>
</tr>
</tbody>
</table>
Expanding $\exists X \forall Y. \phi$ into SAT

$$\exists X \forall Y. \phi \rightarrow \text{SAT} \left(\bigwedge_{\mu \in B^{|Y|}} \phi[Y/\mu] \right)$$
Expanding $\exists X \forall Y. \phi$ into SAT

$\exists X \forall Y. \phi \rightarrow \text{SAT} \left(\bigwedge_{\mu \in B^{|Y|}} \phi[Y/\mu] \right)$

Example

$\exists x_1, x_2 \forall y_1, y_2. (x_1 \leftrightarrow y_1) \land (x_2 \leftrightarrow y_2) \land (\bar{x}_1 \lor \bar{x}_2)$

Expansion:

$$(x_1 \leftrightarrow 0) \land (x_2 \leftrightarrow 0) \land (\bar{x}_1 \lor \bar{x}_2)$$

$$\land (x_1 \leftrightarrow 0) \land (x_2 \leftrightarrow 1) \land (\bar{x}_1 \lor \bar{x}_2)$$

$$\land (x_1 \leftrightarrow 1) \land (x_2 \leftrightarrow 0) \land (\bar{x}_1 \lor \bar{x}_2)$$

$$\land (x_1 \leftrightarrow 1) \land (x_2 \leftrightarrow 1) \land (\bar{x}_1 \lor \bar{x}_2)$$
Expanding $\exists X \forall Y. \phi$ into SAT

$\exists X \forall Y. \phi \rightarrow \text{SAT} \left(\bigwedge_{\mu \in B^{|Y|}} \phi[Y/\mu] \right)$

Example

$\exists x_1, x_2 \forall y_1, y_2. (x_1 \leftrightarrow y_1) \land (x_2 \leftrightarrow y_2) \land (\bar{x}_1 \lor \bar{x}_2)$

Expansion:

$(x_1 \leftrightarrow 0) \land (x_2 \leftrightarrow 0) \land (\bar{x}_1 \lor \bar{x}_2) \land (x_1 \leftrightarrow 0) \land (x_2 \leftrightarrow 1) \land (\bar{x}_1 \lor \bar{x}_2) \land (x_1 \leftrightarrow 1) \land (x_2 \leftrightarrow 0) \land (\bar{x}_1 \lor \bar{x}_2) \land (x_1 \leftrightarrow 1) \land (x_2 \leftrightarrow 1) \land (\bar{x}_1 \lor \bar{x}_2)$
Abstraction of $\exists X \forall Y. \phi$

- Consider only some set of assignments $\omega \subseteq B^{|Y|}$

$$\bigwedge_{\mu \in \omega} \phi[Y/\mu]$$
Abstraction of $\exists X \forall Y. \phi$

- Consider only some set of assignments $\omega \subseteq B^{|Y|}$
 \[\bigwedge_{\mu \in \omega} \phi[Y/\mu] \]

- If a solution to the problem is a solution to the abstraction
 \[\bigwedge_{\mu \in B^{|Y|}} \phi[Y/\mu] \Rightarrow \bigwedge_{\mu \in \omega} \phi[Y/\mu] \]

But not the other way around, a solution to an abstraction is not necessarily a solution to the original problem.
Abstraction of $\exists X \forall Y. \phi$

- Consider only some set of assignments $\omega \subseteq B^{|Y|}$

$$\bigwedge_{\mu \in \omega} \phi[Y/\mu]$$

- If a solution to the problem is a solution to the abstraction

$$\bigwedge_{\mu \in B^{|Y|}} \phi[Y/\mu] \implies \bigwedge_{\mu \in \omega} \phi[Y/\mu]$$

- But not the other way around, a solution to an abstraction is not necessarily a solution to the original problem.
CEGAR Loop

input: $\exists X \forall Y. \phi$

output: (true, τ) if there exists τ s.t. $\forall Y. \phi[X/\tau]$, $(\text{false}, -)$ otherwise

$\omega \leftarrow \emptyset$

while true **do**

- $(\text{outc}_1, \tau) \leftarrow \text{SAT}(\bigwedge_{\mu \in \omega} \phi[Y/\mu])$;
 // find a candidate
- **if** $\text{outc}_1 = \text{false}$ **then**
 - **return** $(\text{false}, -)$;
 // no candidate found
- **else**
 - "τ is a solution";
 // solution check
 then
 - **return** (true, τ)
 else
 - "Grow ω";
 // refinement
- **end**
- **end**
CEGAR Loop

input: $\exists X \forall Y. \phi$

output: (true, τ) if there exists τ s.t. $\forall Y. \phi[X/\tau]$

(false, −) otherwise

$\omega \leftarrow \emptyset$;

while true do

$(\text{outc}_1, \tau) \leftarrow \text{SAT}(\land_{\mu \in \omega} \phi[Y/\mu])$; // find a candidate

if outc$_1$ = false then
 return (false, −); // no candidate found
endif

if “τ is a solution”; // solution check
 return (true, τ)
else
 “Grow ω”; // refinement
endif

done
A value τ is a solution to $\exists X \forall Y. \phi$ iff

$$\forall Y. \phi[X/\tau] \iff \text{UNSAT}(\neg \phi[X/\tau])$$
A value τ is a solution to $\exists X \forall Y. \phi$ iff

$$\forall Y. \phi[X/\tau] \iff \text{UNSAT}(\neg \phi[X/\tau])$$

If SAT($\neg \phi[X/\tau]$) by some μ, then μ is a counterexample to τ
A value τ is a solution to $\exists X \forall Y. \phi$ iff

$$\forall Y. \phi[X/\tau] \iff \text{UNSAT}(\neg \phi[X/\tau])$$

If $\text{SAT}(\neg \phi[X/\tau])$ by some μ, then μ is a counterexample to τ

Example

$\exists x_1, x_2 \ \forall y_1, y_2. (x_1 \rightarrow y_1) \land (x_2 \rightarrow y_2)$

- candidate: $x_1 = 1, x_2 = 1$
- counterexamples: $y_1 = 0, y_2 = 0$
 $\quad y_1 = 0, y_2 = 1$
 $\quad y_1 = 1, y_2 = 0$
Refinement

\[Y \]

\[\begin{array}{ccc}
\tau_2 & 1 & 1 & 1 & 0 \\
\tau_1 & 1 & 1 & 1 & 0 \\
\tau & 1 & 1 & \ldots & 1 & 0 \\
\omega & \ldots & \ldots & \end{array} \]
Refinement

\[\begin{array}{cccc}
\tau_2 & 1 & 1 & 1 & 0 \\
\tau_1 & 1 & 1 & 1 & 0 \\
\tau_0 & 1 & 1 & \ldots & 1 & 0 \\
\end{array} \]
Refinement

\[
\begin{array}{cccc}
\chi & Y & \mu \\
\tau_1 & 1 & 1 & 1 & 0 \\
\tau_2 & 1 & 1 & 1 & 0 \\
\vdots & 1 & 1 & \ldots & 1 & 0 & \cdots \\
\omega & & & & & & \\
\omega' & & & & & &
\end{array}
\]
AReQS (Abstraction Refinement-based QBF Solver)

input: $\exists X \forall Y. \phi$

output: $(true, \tau)$ if there exists τ s.t. $\forall Y. \phi[X/\tau]$, $(false, -)$ otherwise

\[
\omega \leftarrow \emptyset; \quad \text{// start with the empty expansion}
\]

\[
\text{while true do}
\]

\[
(\text{outc}_1, \tau) \leftarrow \text{SAT}(\bigwedge_{\mu \in \omega} \phi[Y/\mu]); \quad \text{// find a candidate}
\]

\[
\text{if outc}_1 = \text{false then}
\]

\[
\text{return (false, -);} \quad \text{// no candidate found}
\]

\[
\text{end}
\]

\[
(\text{outc}_2, \mu) \leftarrow \text{SAT}(\neg \phi[X/\tau]); \quad \text{// find a counterexample}
\]

\[
\text{if outc}_2 = \text{false then}
\]

\[
\text{return (true, } \tau \text{);} \quad \text{// candidate is a solution}
\]

\[
\text{end}
\]

\[
\omega \leftarrow \omega \cup \{\mu\}; \quad \text{// refine}
\]

\[
\text{end}
\]
AReQS — Conclusions

- ... is a CEGAR-based algorithm for 2QBF

[JMS11]
... is a CEGAR-based algorithm for 2QBF [JMS11]
... uses SAT solver as an oracle
• ... is a CEGAR-based algorithm for 2QBF [JMS11]
• ... uses SAT solver as an oracle
• ... gradually expands given 2QBF into a SAT formula
AReQS — Conclusions

- ... is a CEGAR-based algorithm for 2QBF
- ... uses SAT solver as an oracle
- ... gradually expands given 2QBF into a SAT formula
- Can be extended to arbitrary number of levels by recursion (RAReQS)

[JMS11]

[JKMSC12]
Outline

CNF Encodings

SAT Embeddings

SAT Oracles

What Next in SAT-Based Problem Solving?
Remarkable (and increasing) number of applications of SAT

Can use SAT for solving problems in different complexity classes
- \(\text{FP}^{\text{NP}}[\log n], \text{FP}^{\text{NP}}, \ldots \)
- E.g. tackling problems in the polynomial hierarchy

Many new recent algorithms for concrete problems
- MaxSAT
- MUSes
- MCSes
- Enumeration problems
- ...

Better encodings?

White-box vs. black-box approaches?
- But use of oracles inevitable in many cases
Thank You
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
GN02 E. Goldberg, Y. Novikov: BerkMin: A Fast and Robust Sat-Solver. DATE 2002: 142-149

SB09 N. Sorensson, A. Biere: Minimizing Learned Clauses. SAT 2009: 237-243

VG09 A. Van Gelder: Improved Conflict-Clause Minimization Leads to Improved Propositional Proof Traces. SAT 2009: 141-146

AS09 G. Audemard, L. Simon: Predicting Learnt Clauses Quality in Modern SAT Solvers. IJCAI 2009: 399-404

<table>
<thead>
<tr>
<th>Reference</th>
<th>Author(s)</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>dK89</td>
<td>Johan de Kleer</td>
<td>A Comparison of ATMS and CSP Techniques.</td>
<td>IJCAI 1989: 290-296</td>
</tr>
<tr>
<td>GJ96</td>
<td>R. Genisson, P. Jegou</td>
<td>Davis and Putnam were Already Checking Forward.</td>
<td>ECAI 1996: 180-184</td>
</tr>
<tr>
<td>W00</td>
<td>T. Walsh</td>
<td>SAT v CSP.</td>
<td>CP 2000: 441-456</td>
</tr>
</tbody>
</table>
FP01 A. Frisch, T. Peugniez: Solving Non-Boolean Satisfiability Problems with Stochastic Local Search. IJCAI 2001: 282-290

S05 C. Sinz: Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. CP 2005: 827-831

G07 M. Gavanelli: The Log-Support Encoding of CSP into SAT. CP 2007: 815-822

BBR09 O. Bailleux, Y. Boufkhad, O. Roussel: New Encodings of Pseudo-Boolean Constraints into CNF. SAT 2009: 181-194

CZI10 M. Codish, M. Zazon-Ivry: Pairwise Cardinality Networks. LPAR (Dakar) 2010: 154-172

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>S07</td>
<td>R. Sebastiani</td>
<td>Lazy Satisability Modulo Theories</td>
<td>JSAT</td>
<td>3</td>
<td>3-4</td>
<td>141-224</td>
<td>2007</td>
</tr>
<tr>
<td>BSST09</td>
<td>C. Barrett, R. Sebastiani, S. Seshia, C. Tinelli</td>
<td>Satisfiability Modulo Theories</td>
<td>Handbook of Satisfiability 2009</td>
<td></td>
<td></td>
<td>825-885</td>
<td></td>
</tr>
<tr>
<td>LBP10</td>
<td>D. Le Berre, A. Parrain</td>
<td>The Sat4j library, release 2.2</td>
<td>JSAT</td>
<td>7</td>
<td>2-3</td>
<td>59-6</td>
<td>2010</td>
</tr>
<tr>
<td>KZFH12</td>
<td>M. Koshimura, T. Zhang, H. Fujita, R. Hasegawa</td>
<td>QMaxSAT: A Partial Max-SAT Solver</td>
<td>JSAT</td>
<td>8</td>
<td>1/2</td>
<td>95-100</td>
<td>2012</td>
</tr>
<tr>
<td>Reference</td>
<td>Authors</td>
<td>Title</td>
<td>Conference/Journal Details</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDTW93</td>
<td>R. R. Bakker, F. Dikker, F. Tempelman, P. M. Wognum</td>
<td>Diagnosing and Solving Over-Determined Constraint Satisfaction Problems</td>
<td>IJCAI 1993: 276-281</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Code</td>
<td>Authors</td>
<td>Title</td>
<td>Conference/Volume/Issue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSL11</td>
<td>J. Marques-Silva, I. Lynce</td>
<td>On Improving MUS Extraction Algorithms.</td>
<td>SAT 2011: 159-173</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMS11</td>
<td>A. Belov, J. Marques-Silva</td>
<td>Accelerating MUS extraction with recursive model rotation.</td>
<td>FMCAD 2011: 37-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W12</td>
<td>Siert Wieringa</td>
<td>Understanding, Improving and Parallelizing MUS Finding Using Model Rotation.</td>
<td>CP 2012: 672-687</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSJB13</td>
<td>J. Marques-Silva, M. Janota, A. Belov</td>
<td>Minimal Sets over Monotone Predicates in Boolean Formulae.</td>
<td>CAV 2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Authors & Title</td>
<td>Conference/Journal</td>
<td>Page(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>--------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM06</td>
<td>Z. Fu, S. Malik: On Solving the Partial MAX-SAT Problem</td>
<td>SAT 2006</td>
<td>252-265</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSP08</td>
<td>J. Marques-Silva, Jordi Planes: Algorithms for Maximum Satisfiability using Unsatisfiable Cores</td>
<td>DATE 2008</td>
<td>408-413</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABL09a</td>
<td>C. Ansotegui, M. Bonet, J. Levy: Solving (Weighted) Partial MaxSAT through Satisfiability Testing</td>
<td>SAT 2009</td>
<td>427-440</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABL09b</td>
<td>C. Ansotegui, M. L. Bonet, J. Levy: On Solving MaxSAT Through SAT</td>
<td>CCIA 2009</td>
<td>284-292</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABL10</td>
<td>C. Ansotegui, M. Bonet, J. Levy: A New Algorithm for Weighted Partial MaxSAT</td>
<td>AAAI 2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Authors</td>
<td>Title</td>
<td>Conference/Proceedings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB11</td>
<td>J. Davies, F. Bacchus</td>
<td>Solving MAXSAT by Solving a Sequence of Simpler SAT Instances.</td>
<td>CP 2011: 225-239</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MHMS12</td>
<td>A. Morgado, F. Heras, J. Marques-Silva</td>
<td>Improvements to Core-Guided Binary Search for MaxSAT.</td>
<td>SAT 2012.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABGL12</td>
<td>C. Ansotegui, M. Bonet, J. Gabas, J. Levy</td>
<td>Improving SAT-Based Weighted MaxSAT Solvers.</td>
<td>CP 2012: 86-101</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB13a</td>
<td>J. Davies, F. Bacchus</td>
<td>Exploiting the Power of MIP Solvers in MaxSAT.</td>
<td>SAT 2013: 166-181</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABGL13</td>
<td>C. Ansotegui, M. Bonet, J. Gabas and J. Levy</td>
<td>Improving WPM2 for (Weighted) Partial MaxSAT.</td>
<td>CP 2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DB13b</td>
<td>J. Davies and F. Bacchus</td>
<td>Postponing Optimization to Speed Up MaxSAT Solving.</td>
<td>CP 2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Authors and Title</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JMS11</td>
<td>M. Janota, J. Marques-Silva: Abstraction-Based Algorithm for 2QBF. SAT 2011: 230-244</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JKMSC12</td>
<td>M. Janota, W. Klieber, J. Marques-Silva, E. Clarke: Solving QBF with Counterexample Guided Refinement. SAT 2012: 114-128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KJMSC13</td>
<td>W. Klieber, M. Janota, J. Marques-Silva, E. Clarke: Solving QBF with Free Variables. CP 2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References – Additional References

C71 S. Cook: The Complexity of Theorem-Proving Procedures. STOC 1971: 151-158
SP04 S. Subbarayan, D. Pradhan: NiVER: Non-increasing Variable Elimination Resolution for Preprocessing SAT Instances. SAT 2004: 276-291
EB05 N. Een, A. Biere: Effective Preprocessing in SAT Through Variable and Clause Elimination. SAT 2005: 61-75
HJB11 M. Heule, M. Jarvisalo, A. Biere: Efficient CNF Simplification Based on Binary Implication Graphs. SAT 2011: 201-215